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> Motivations

*» Unlike images, graph data are inherently heterogenous (e.g.
pandemics, product co-purchase relation, molecules).

** The SOTA GraphCL [1] handles the heterogenousity with ad-hoc
choices of augmentations (priors) for every datasets.

*» Rather than the discrete selection on prefabricated ones, can we
directly learn and generate such priors, continuously?

** Question: What us the space, principle and framework for
learnable GraphCL priors (GraphCL-LP)?

» Method. Graph Generative Models as
Learnable Priors

** We define the space of GraphCL priors as the set of stochastic mappings
between graph manifolds m: G — G.

*» Naturally, we adopt the recent rising graph generative models (VGAE [2]
here) for the prior space parametrization.

*» Further, principled reward signals are introduced to convey messages from
contrastive learning to generator training. |

*» Above components are assembled into the bi-level optimization framework.
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Figure 2: Pipeline of GraphCL with learned prior. Graph generative models g .74, generate contrastive views for self-
supervised contrasting, and then receive the reward for their parameter update.
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> References

» Method. Principles for Learning Priors to Contrast

Contrastive views

*» Information minimization (InfoMin). Encouraging
contrastive views to share less mutual information.

* Information bottleneck (InfoBN). Diminishing the
iInformation overlap between each contrastive view
and its latent representation.

» EXxperiments

*» We numerically show the competitive performance
of GraphCL-LP versus SOTA methods.

Table 2: Semi-supervised learning on small-scale benchmarks from TUDataset (the first four) and large-scale ones from OGB
(the last two). Shown in red are the best three accuracies (%) for TUDataset and the best for ogbg-ppa and F1-score (%) for ogbg-
code. The SOTA results compared here are as published under the same experimental setting (- indicates that results were not
available in corresponding publications).
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Figure 3: Schematic diagram of the InfoMin and InfoBN
principles to guide the prior learning in GraphCL.

Methods COLLAR RDT-B RDT-M5K GITHUR oghg-ppa  ogbg-code

No pre-train 73.71+20.27 B6.63+£0.27 51.33+0.44  60.87+0.17 56.01+1.05 17.85+0.60
Augmentations 74.19+0.13  &87.74+£0.39  52.01+£0.20  60.91+0.32 - -
GAE 75.09+0.19 87.69+040 53.58+0.13 63.89+0.52 - -
Infomax 73.76x0.29 88.660.95 53.61x0.31 65.21+0.88 - -
ContextPred 73.69+0.37 84764052 51.23+0.34 62.35+0.73 - -

{il'aph{IL 74.23+0.21  89.11+0.19 5255+045 65.81+0.79 57.07+€1.25 22.45+0.17

LP-InfoMin J4o66x0.14 BR.03x0.46 53.00+0.26  62.71+0.54 29.10+0.88  23.50+0.22

LP-InfoBN 74614028  87.64+0.33  53.05+0.14 62.64+0.37 55.484+0.97 2331+0.22

LP-Info(Min&BN) 74.84+0.31 87.81+0.45 53.32+0.23 63.11+£0.33 57311099  23.6110.27

*» Further analysis show: graph generation quality usually aligns with downstream performance;
and also molecule-specific generator (GraphAF [3] here) alone does not significantly benefit

molecular datasets.

Table 5: Link prediction performance (AUROC and AUPRC, %) of VGAE generators on eight pre-training datasets. Better link
prediction results are marked in red if accompanied with better downstream performances, as shown in Table 2, 3 and 4.

Principles COLLAB RDT-B  RDT-M5K  GITHUB ogbg-ppa ogbg-code Trans-Mol Trans-PPI
AUROC (%) InfoMin 71.28 97.32 99.08 T8.68 96.53 92.39 6d.54 71.20
" InfoBN 69,44 Q7.29 99.31 81.20 05.24 94.06 83.55 71.32
AUPRC (%) InfoMin 80.84 96.62 08.67 78,49 05,94 0008 64.14 6034
) ik InfoBN 7013 0659 98.97 80.47 05.30 01.66 82.51 70.65

Table 6: Learned prior performance with different generators under the guidance of InfoMin, in the transfer learning setting
on molecular datasets. Red numbers indicate the best performances (AUROC, %).

Methods BBEBF Tox21 ToxCast SIDER ClinTox MUV HIV BACE
VGAE 7147066 7460070 63.13+£030 60524075  T239+1.50  T051+2.25 T6.43+0.85 T8.86+1.60
GraphAF  70.55+0.63 7351043 62.03+0.33 61.32+132 7747191 72.25x1.18 76.30+1.34 7843+236
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