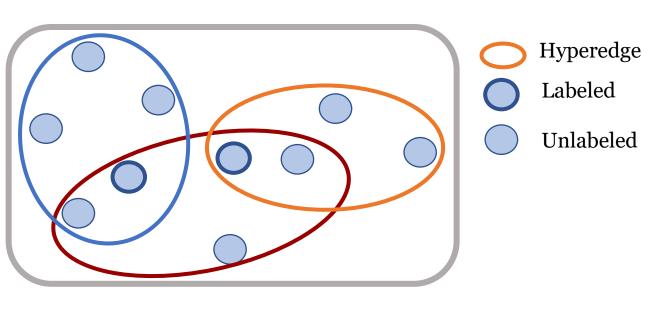
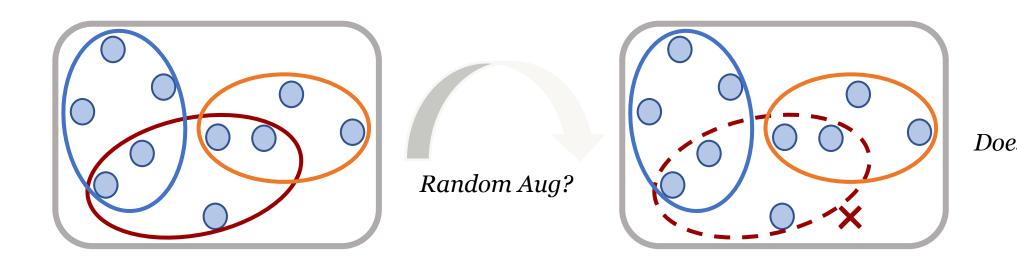




Background

Hypergraphs have raised a surge of interest in the research community

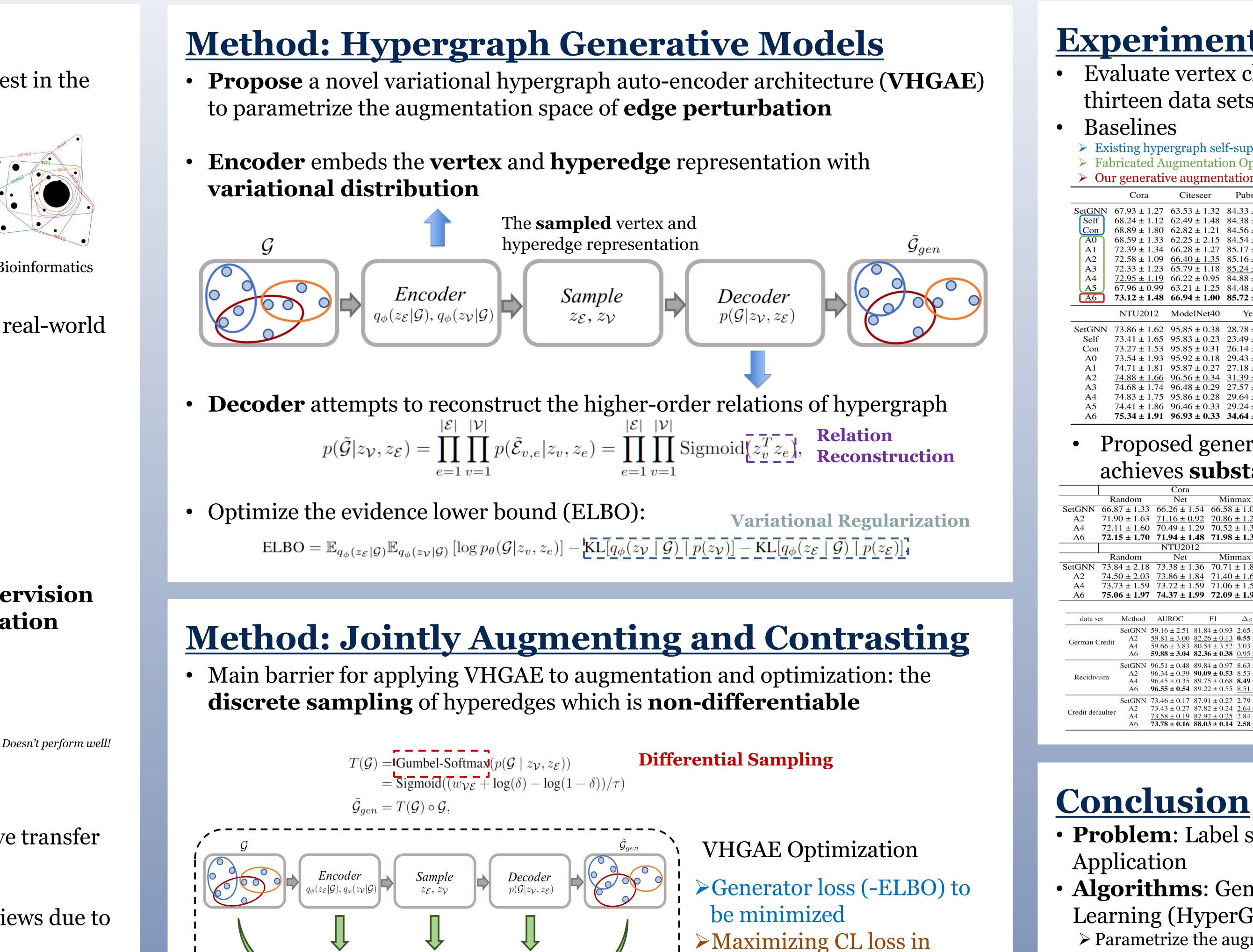



Bioinformatics

• Label scarcity scenarios: ubiquitous in real-world applications of hypergraphs

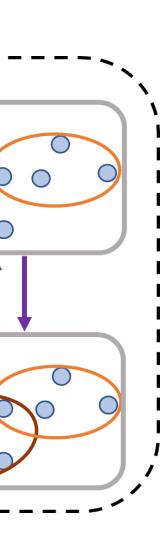
Restrict the **generalizability** of HyperGNNs!

Solution: Develop contrastive self-supervision on hypergraphs, which relies on **augmentation** construction


- **Bad construction** would result in negative transfer
- It's also **non-trivial** to build hypergraph views due to their overly intricate topology

possibilities for one hyperedge on N vertices !

- **Question**: How to construct augmentations on hypergraph?
- **Contribution:** Propose to generate better augmented views in a **data-driven manner**:
- \succ Novel hypergraph generator \rightarrow **parameterize** a certain **augmentation space** of hypergraphs
- \succ End-to-end pipeline \rightarrow **jointly learn** hypergraph augmentations and model parameters


Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative Tianxin Wei^{1*}, Yuning You^{2*}, Tianlong Chen³, Yang Shen², Jingrui He¹, Zhangyang Wang³

¹University of Illinois at Urbana-Champaign, ²Texas A&M University, ³University of Texas at Austin {twei10,jingrui}@illinois.edu}, {yuning.you,yshen}@tamu.edu}, {tianlong.chen,atlaswang}@utexas.edu *Equal Contribution

Input 9

VHGAE to avoid capturing redundant information

Node Contrast

 $\mathcal{L}_{gen}(\phi) - \beta \cdot \mathcal{L}_{cl}(\mathcal{G}, \tilde{\mathcal{G}}_{gen} \mid \theta, \phi)$

HyperGNN Optimization

>Optimize HyperGNN with generated augmentation ≻HyperGNN is eventually used for evaluation

AIFARMS elligence for Future Agricultura Resilience, Management, and Sustainabil

NEURAL INFORMATION PROCESSING SYSTEMS

Experiments

Evaluate vertex classification performance on

thirteen data sets

> Existing hypergraph self-supervised learning methods Fabricated Augmentation Operations

Our generative augmentation

0						
Citeseer	Pubmed	Cora-CA	DBLP-CA	Zoo	20Newsgroups	Mushroom
63.53 ± 1.32	84.33 ± 0.36	72.21 ± 1.51	89.51 ± 0.18	65.06 ± 12.82	79.37 ± 0.35	99.75 ± 0.11
62.49 ± 1.48	84.38 ± 0.38	72.74 ± 1.53	89.51 ± 0.23	57.35 ± 18.32	79.45 ± 0.32	95.83 ± 0.23
62.82 ± 1.21	84.56 ± 0.34	73.22 ± 1.65	89.59 ± 0.13	61.05 ± 14.54	79.49 ± 0.45	95.85 ± 0.31
62.25 ± 2.15	84.54 ± 0.42	71.85 ± 1.62	89.62 ± 0.24	62.57 ± 13.84	79.07 ± 0.46	99.77 ± 0.17
66.28 ± 1.27	85.17 ± 0.37	75.45 ± 1.54	89.83 ± 0.21	65.80 ± 13.31	79.47 ± 0.32	99.80 ± 0.14
66.40 ± 1.35	85.16 ± 0.38	75.62 ± 1.42	90.22 ± 0.23	66.35 ± 13.26	79.56 ± 0.42	99.80 ± 0.17
65.79 ± 1.18	85.24 ± 0.28	75.34 ± 1.40	89.85 ± 0.16	65.79 ± 14.05	79.47 ± 0.34	99.81 ± 0.10
66.22 ± 0.95	84.88 ± 0.38	75.29 ± 1.56	90.10 ± 0.18	62.59 ± 12.77	79.45 ± 0.48	99.80 ± 0.14
63.21 ± 1.25	84.48 ± 0.40	72.61 ± 1.86	89.75 ± 0.24	62.47 ± 12.39	79.42 ± 0.52	99.79 ± 0.10
66.94 ± 1.00	85.72 ± 0.38	76.21 ± 1.26	90.28 ± 0.19	66.89 ± 12.44	79.78 ± 0.40	99.86 ± 0.10
ModelNet40	Yelp	House (0.6)	House (1.0)	Walmart (0.6)	Walmart (1.0)	Avg. Rank
95.85 ± 0.38	28.78 ± 1.51	68.54 ± 1.89	58.34 ± 2.25	74.97 ± 0.22	59.13 ± 0.20	7.71
95.83 ± 0.23	23.49 ± 4.15	67.75 ± 3.29	58.54 ± 2.16	74.76 ± 0.20	58.83 ± 0.21	8.64
95.85 ± 0.31	26.14 ± 1.86	68.50 ± 2.52	58.56 ± 2.42	75.17 ± 0.21	59.39 ± 0.20	7.07
95.92 ± 0.18	29.43 ± 1.42	67.48 ± 3.21	57.39 ± 2.37	73.14 ± 0.21	56.49 ± 0.60	8.21
95.87 ± 0.27	27.18 ± 0.71	68.64 ± 2.99	58.10 ± 3.22	75.42 ± 0.13	60.09 ± 0.25	4.50
96.56 ± 0.34	31.39 ± 2.45	69.73 ± 2.60	58.90 ± 1.97	75.50 ± 0.18	60.19 ± 0.20	2.29
96.48 ± 0.29	27.57 ± 1.00	67.88 ± 2.90	58.51 ± 2.22	75.29 ± 0.23	60.19 ± 0.20	4.71
95.86 ± 0.28	29.64 ± 1.93	69.56 ± 2.89	58.91 ± 2.69	75.43 ± 0.18	59.90 ± 0.24	4.14
96.46 ± 0.33	29.24 ± 1.42	68.14 ± 2.97	57.70 ± 2.98	75.26 ± 0.18	59.81 ± 0.22	6.71
96.93 ± 0.33	34.64 ± 0.39	70.96 ± 2.27	59.93 ± 1.99	75.62 ± 0.16	60.46 ± 0.20	1.00

Proposed generative augmentation (A6)

C			U						
es sı	ıbsta	ntial	imp	rovei	ment	S			
Cora			Citeseer		ModelNet40				
Net	Minmax	Random	Net	Minmax	Random	Net	Minmax		
6.26 ± 1.54	66.58 ± 1.02	62.89 ± 1.57	62.81 ± 1.32	62.21 ± 1.64	95.74 ± 0.22	95.41 ± 0.28	93.33 ± 0.26		
$.16 \pm 0.92$	70.86 ± 1.22	66.41 ± 1.08	65.38 ± 1.47	64.69 ± 0.98	96.09 ± 0.17	95.52 ± 0.24	93.64 ± 0.26		
0.49 ± 1.29	70.52 ± 1.39	$\overline{65.94 \pm 1.24}$	$\overline{65.15 \pm 1.70}$	$\overline{64.12 \pm 1.19}$	$\overline{95.79 \pm 0.27}$	95.44 ± 0.25	$\overline{93.35 \pm 0.24}$		
1.94 ± 1.48	71.98 ± 1.36	66.60 ± 1.61	65.68 ± 1.09	65.51 ± 1.13	96.58 ± 0.24	96.23 ± 0.23	94.82 ± 0.33		
NTU2012	012		House (0.6)		House (1.0)				
Net	Minmax	Random	Net	Minmax	Random	Net	Minmax		
3.38 ± 1.36	70.71 ± 1.89	67.16 ± 2.55	68.88 ± 2.68	64.78 ± 2.20	56.86 ± 1.93	59.95 ± 1.92	56.52 ± 2.52		
3.86 ± 1.84	71.40 ± 1.64	67.71 ± 2.94	69.59 ± 2.32	65.23 ± 2.89	57.74 ± 2.70	60.73 ± 2.30	57.00 ± 1.94		
3.72 ± 1.59	71.06 ± 1.53	67.55 ± 2.41	68.85 ± 1.38	64.97 ± 3.35	57.47 ± 2.72	60.10 ± 1.74	56.65 ± 2.26		
1.37 ± 1.99	72.09 ± 1.98	69.88 ± 3.27	73.14 ± 2.71	68.84 ± 2.71	60.06 ± 2.07	62.41 ± 1.77	58.76 ± 2.24		
UROC	F1 $\Delta_{SP}($	$\downarrow) \Delta_{EO}(\downarrow)$	• Fin	at nahuai	noggon	d fairmaa	a		
	$4 \pm 0.93 2.65 \pm 5$		 First robustness and fairness 						
	6 ± 0.13 0.55 ± 0		01/0	luation	for hyper	raranha			
	$4 \pm 3.52 3.03 \pm 6$ $6 \pm 0.38 0.95 \pm 0$		CVA	luation	ior myper	graphs			
	$\frac{4 \pm 0.97}{20 \pm 0.52}$ 8.63 ± 0								
	9 ± 0.53 8.53 ± 0 5 ± 0.68 8.49 ± 0		• R O	hust ag	ainst adv	versarial	attacks		
	$2 \pm 0.55 \ 8.51 \pm 0.51 \pm 0.5$			bust ug	unific au	<i>c</i> rbariar	attacho		
	$01 \pm 0.27 2.79 \pm 0.00$								
	2 ± 0.24 2.64 ± 1			•		•1			
	2 ± 0.25 2.84 ± 1		• Fa	ir w.r.t. :	sensitive	e attribut	es		
8 ± 0.16 88.0	$\overline{3 \pm 0.14}$ 2.58 ± 0	$0.91 \ 0.81 \pm 0.37$	_ •••						

• **Problem**: Label scarcity scenarios of Hypergraph

• Algorithms: Generative Hypergraph Contrastive Learning (HyperGCL)

> Parametrize the augmentation space

> Jointly learn augmentation and model

• **Evaluation**: Effectiveness on generalization,

robustness, and fairness

Acknowledgment

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902, IIS-2137468, CCF-1943008; US Army Research Office Young Investigator Award W911NF2010240;

National Institute of General Medical Sciences under grant R35GM124952; and Agriculture and Food Research Initiative grant no. 2020-67021-32799/project accession no.1024178 from the USDA National Institute of Food and Agriculture. The views and conclusions are those of the authors and should not be interpreted as representing

the official policies of the government agencies.