
Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative

Conclusion
• Problem: Label scarcity scenarios of Hypergraph 

Application
• Algorithms: Generative Hypergraph Contrastive 

Learning (HyperGCL)
➢Parametrize the augmentation space
➢ Jointly learn augmentation and model

• Evaluation: Effectiveness on generalization, 
robustness, and fairness

Background
• Hypergraphs have raised a surge of interest in the 

research community

• Label scarcity scenarios: ubiquitous in real-world 
applications of hypergraphs

• Solution: Develop contrastive self-supervision 
on hypergraphs, which relies on augmentation 
construction 

• Bad construction would result in negative transfer

• It’s also non-trivial to build hypergraph views due to 
their overly intricate topology

• Question: How to construct augmentations on 
hypergraph?

• Contribution: Propose to generate better augmented 
views in a data-driven manner:
➢Novel hypergraph generator → parameterize a certain 

augmentation space of hypergraphs
➢End-to-end pipeline → jointly learn hypergraph 

augmentations and model parameters

Experiments
• Evaluate vertex classification performance on 

thirteen data sets
• Baselines

➢ Existing hypergraph self-supervised learning methods
➢ Fabricated Augmentation Operations
➢ Our generative augmentation
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Unlabeled

Restrict the generalizability of HyperGNNs!

Random Aug?

×

Doesn’t perform well!

possibilities for one 
hyperedge on N vertices！

Method: Hypergraph Generative Models
• Propose a novel variational hypergraph auto-encoder architecture (VHGAE) 

to parametrize the augmentation space of edge perturbation

• Encoder embeds the vertex and hyperedge representation with 
variational distribution

• Decoder attempts to reconstruct the higher-order relations of hypergraph

• Optimize the evidence lower bound (ELBO):

Method: Jointly Augmenting and Contrasting
• Main barrier for applying VHGAE to augmentation and optimization: the 

discrete sampling of hyperedges which is non-differentiable

Relation 
Reconstruction

The sampled vertex and 
hyperedge representation

Variational Regularization

Differential Sampling

VHGAE Optimization

HyperGNN Optimization

➢Generator loss (-ELBO) to 
be minimized

➢Maximizing CL loss in 
VHGAE to avoid capturing 
redundant information

➢Optimize HyperGNN with 
generated augmentation

➢HyperGNN is eventually 
used for evaluation

• Proposed generative augmentation (A6) 
achieves substantial improvements

• First robustness and fairness 
evaluation for hypergraphs

• Robust against adversarial attacks

• Fair w.r.t. sensitive attributes
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