Graph Contrastive Learning with Augmentations Yuning You^{1*}, Tianlong Chen^{2*}, Yongduo Sui³, Ting Chen⁴, Zhangyang Wang², Yang Shen¹ ¹Texas A&M University, ²University of Texas at Austin, ³University of Science and Technology of China, ⁴Google Research, Brain Team, *Equal contribution, __Speaker #### **Background** Pre-training graph neural networks (GNNs) is under-explored with some exceptions, while its necessity emerges in recent years; Designing GNN pre-training schemes is challenging due to the dataset diversity; Recent surge of interest in contrastive learning in computer vision provides us a potential methodology for designing GNN pre-training schemes. ## **Methods: Data Augmentation for Graphs** - Data augmentation: creating novel and realistically rational data via certain transformation without affecting the semantics label; - Little exploration on data augmentations on graphs; - We propose four general data augmentations for graph-structured data and discuss the intuitive priors that they introduce. **Table 1:** Overview of data augmentations for graphs. | Data augmentation | Type | Underlying Prior | | | | |-------------------|--------------|---|--|--|--| | Node dropping | Nodes, edges | Vertex missing does not alter semantics. | | | | | Edge perturbation | Edges | Semantic robustness against connectivity variations. | | | | | Attribute masking | Nodes | Semantic robustness against losing partial attributes per node. | | | | | Subgraph | Nodes, edges | Local structure can hint the full semantics. | | | | # **Methods: Graph Contrastive Learning (GraphCL)** GraphCL: maximizing agreement between two augmented views of graph via a contrastive loss in the latent space. **Figure 1:** A framework of graph contrastive learning. Two graph augmentations $q_i(\cdot|\mathcal{G})$ and $q_j(\cdot|\mathcal{G})$ are sampled from an augmentation pool \mathcal{T} and applied to input graph \mathcal{G} . A shared GNN-based encoder $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize the agreement between representations z_i and z_j via a contrastive loss. #### The Role of Data Augmentation in GraphCL Graph Num. Avg. Node Avg. Degree Datasets Category NCI1 Biochemical Molecules 4110 29.87 1.08 **PROTEINS** Biochemical Molecules 1113 39.06 1.86 32.99 COLLAB Social Networks 5000 74.49 2000 429.63 1.15 Social Networks RDT-B **Table 2:** Datasets statistics. **Figure 2:** Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared to training from scratch, under four datasets: NCI1, PROTEINS, COLLAB, and RDT-B. Pairing "Identical" stands for a no-augmentation baseline for contrastive learning, where the positive pair diminishes and the negative pair consists of two non-augmented graphs. Warmer colors indicate better performance gains. The baseline training-from-scratch accuracies are 60.72%, 70.40%, 57.46%, 86.63% for the four datasets respectively. # The Role of Data Augmentation in GraphCL - Obs. 1. Data augmentations are crucial in graph contrastive learning; - Obs. 2. Composing different augmentations benefits more; - Obs. 3. Edge perturbation benefits social networks but hurts some biochemical molecules; - Obs. 4. Applying attribute masking achieves better performance in denser graphs; - Obs. 5. Node dropping and subgraph are generally beneficial across datasets. ## **Comparison with the State-of-the-art Methods** Semi-supervised learning: **Table 3:** Semi-supervised learning with pre-training & finetuning. Red numbers indicate the best performance and the number that overlap with the standard deviation of the best performance (comparable ones). 1% or 10% is label rate; baseline and Aug. represents training from scratch without and with augmentations, respectively. | Dataset | NCI1 | PROTEINS | DD | COLLAB | RDT-B | RDT-M5K | GITHUB | MNIST | CIFAR10 | |--------------|---------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------| | 1% baseline | 60.72±0.45 | - | - | 57.46±0.25 | - | - | 54.25±0.22 | 60.39±1.95 | 27.36±0.75 | | 1% Aug. | 60.49 ± 0.46 | - | - | 58.40±0.97 | - | - | 56.36 ± 0.42 | 67.43 ± 0.36 | 27.39 ± 0.44 | | 1% GAE | 61.63 ± 0.84 | - | - | 63.20 ± 0.67 | - | - | 59.44 ± 0.44 | 57.58±2.07 | 21.09 ± 0.53 | | 1% Infomax | 62.72 ± 0.65 | - | - | 61.70±0.77 | - | - | 58.99 ± 0.50 | 63.24 ± 0.78 | 27.86 ± 0.43 | | 1% GraphCL | $6\overline{2.55}\pm0.86$ | | | 64.57 ± 1.15 | | | 58.56±0.59 | -83.41 ± 0.33 | 30.01 ± 0.84 | | 10% baseline | 73.72 ± 0.24 | 70.40 ± 1.54 | 73.56 ± 0.41 | 73.71 ± 0.27 | 86.63 ± 0.27 | 51.33 ± 0.44 | 60.87 ± 0.17 | 79.71±0.65 | 35.78 ± 0.81 | | 10% Aug. | 73.59 ± 0.32 | 70.29 ± 0.64 | 74.30 ± 0.81 | 74.19 ± 0.13 | 87.74 ± 0.39 | 52.01 ± 0.20 | 60.91 ± 0.32 | 83.99±2.19 | 34.24 ± 2.62 | | 10% GAE | 74.36 ± 0.24 | 70.51 ± 0.17 | 74.54 ± 0.68 | 75.09 ± 0.19 | 87.69 ± 0.40 | 53.58 ± 0.13 | 63.89 ± 0.52 | 86.67 ± 0.93 | 36.35 ± 1.04 | | 10% Infomax | 74.86 ± 0.26 | 72.27 ± 0.40 | 75.78 ± 0.34 | 73.76±0.29 | 88.66 ± 0.95 | 53.61 ± 0.31 | 65.21 ± 0.88 | 83.34±0.24 | 41.07 ± 0.48 | | 10% GraphCL | 74.63 ± 0.25 | 74.17±0.34 | 76.17 ± 1.37 | 74.23±0.21 | 89.11±0.19 | 52.55±0.45 | 65.81±0.79 | 93.11±0.17 | 43.87 ± 0.77 | Unsupervised representation learning: **Table 4:** Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA representation learning methods, and GIN pre-trained with GraphCL. The compared numbers are from the corresponding papers under the same experiment setting. | Dataset | NCI1 | PROTEINS | DD | MUTAG | COLLAB | RDT-B | RDT-M5K | IMDB-B | |-----------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------| | GL | - | - | - | 81.66 ± 2.11 | - | 77.34 ± 0.18 | 41.01 ± 0.17 | 65.87 ± 0.98 | | WL | 80.01 ± 0.50 | 72.92 ± 0.56 | - | 80.72 ± 3.00 | - | 68.82 ± 0.41 | 46.06 ± 0.21 | 72.30 ± 3.44 | | DGK | 80.31 ± 0.46 | 73.30 ± 0.82 | - | 87.44 ± 2.72 | - | 78.04 ± 0.39 | 41.27 ± 0.18 | 66.96 ± 0.56 | | node2vec | 54.89±1.61 | 57.49±3.57 | - | 72.63 ± 10.20 | - | - | - | - | | sub2vec | 52.84 ± 1.47 | 53.03 ± 5.55 | - | 61.05 ± 15.80 | - | 71.48 ± 0.41 | 36.68 ± 0.42 | 55.26 ± 1.54 | | graph2vec | 73.22 ± 1.81 | 73.30 ± 2.05 | - | 83.15 ± 9.25 | - | 75.78 ± 1.03 | 47.86 ± 0.26 | 71.10 ± 0.54 | | InfoGraph | 76.20 ± 1.06 | 74.44 ± 0.31 | 72.85 ± 1.78 | 89.01 ± 1.13 | 70.65 ± 1.13 | 82.50 ± 1.42 | 53.46 ± 1.03 | 73.03 ± 0.87 | | GraphCL | 77.87±0.41 | 74.39 ± 0.45 | 78.62 ± 0.40 | 86.80±1.34 | 71.36±1.15 | 89.53 ± 0.84 | 55.99 ± 0.28 | 71.14 ± 0.44 | #### **Comparison with the State-of-the-art Methods** ## Transfer learning: **Table 5:** Transfer learning comparison with different manually designed pre-training schemes. | Dataset | BBBP | Tox21 | ToxCast | SIDER | ClinTox | MUV | HIV | BACE | PPI | |--------------|----------------|------------------|----------------|------------------|------------------|----------------|------------------|----------------|----------------| | No Pre-Train | 65.8±4.5 | 74.0 ± 0.8 | 63.4 ± 0.6 | 57.3±1.6 | 58.0±4.4 | 71.8±2.5 | 75.3±1.9 | 70.1±5.4 | 64.8±1.0 | | Infomax | 68.8 ± 0.8 | 75.3 ± 0.5 | 62.7 ± 0.4 | 58.4±0.8 | 69.9±3.0 | 75.3±2.5 | 76.0 ± 0.7 | 75.9±1.6 | 64.1±1.5 | | EdgePred | 67.3 ± 2.4 | 76.0 ± 0.6 | 64.1 ± 0.6 | 60.4 ± 0.7 | 64.1 ± 3.7 | 74.1 ± 2.1 | 76.3 ± 1.0 | 79.9 ± 0.9 | 65.7±1.3 | | AttrMasking | 64.3 ± 2.8 | 76.7 ± 0.4 | 64.2 ± 0.5 | 61.0 ± 0.7 | 71.8 ± 4.1 | 74.7 ± 1.4 | 77.2 ± 1.1 | 79.3 ± 1.6 | 65.2 ± 1.6 | | ContextPred | 68.0 ± 2.0 | 75.7 ± 0.7 | 63.9 ± 0.6 | 60.9 ± 0.6 | 65.9 ± 3.8 | 75.8 ± 1.7 | 77.3 ± 1.0 | 79.6 ± 1.2 | 64.4±1.3 | | GraphCL | 69.68±0.67 | 73.87 ± 0.66 | 62.40±0.57 | 60.53 ± 0.88 | 75.99 ± 2.65 | 69.80 ± 2.66 | 78.47 ± 1.22 | 75.38 ± 1.44 | 67.88±0.85 | #### Adversarial robustness. **Table 6:** Adversarial performance under three adversarial attacks for GNN with different depth (following the protocol in [60]). Red numbers indicate the best performance. | | Two-Layer | | Three-L | ayer | Four-Layer | | | |--------------|--------------|---------|--------------|---------|--------------|---------|--| | Methods | No Pre-Train | GraphCL | No Pre-Train | GraphCL | No Pre-Train | GraphCL | | | Unattack | 93.20 | 94.73 | 98.20 | 98.33 | 98.87 | 99.00 | | | RandSampling | 78.73 | 80.68 | 92.27 | 92.60 | 95.13 | 97.40 | | | GradArgmax | 69.47 | 69.26 | 64.60 | 89.33 | 95.80 | 97.00 | | | RL-S2V | 42.93 | 42.20 | 41.93 | 61.66 | 70.20 | 84.86 | | **TEXAS A&M UNIVERSITY** # Engineering Thank you for listening!