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* Pre-training graph neural networks (GNNSs) is under-explored with some
exceptions, while its necessity emerges in recent years;

* Designing GNN pre-training schemes is challenging due to the dataset
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 Data augmentation: creating novel and realistically rational data via
certain transformation without affecting the semantics label;

* Little exploration on data augmentations on graphs;

* We propose four general data augmentations for graph-structured data
and discuss the intuitive priors that they introduce.

Table 1: Overview of data augmentations for graphs.

Data augmentation | Type | Underlying Prior
Node dropping | Nodes, edges | Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations.
Attribute masking Nodes Semantic robustness against losing partial attributes per node.
Subgraph Nodes, edges Local structure can hint the full semantics.
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* GraphCL: maximizing agreement between two augmented views of
graph via a contrastive loss in the latent space.

Methods: Graph Contrastive Learning (GraphCL)
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Figure 1: A framework of graph contrastive learning. Two graph augmentations ¢;(-|G) and ¢, (-|G) are sampled
from an augmentation pool 7 and applied to input graph G. A shared GNN-based encoder f(-) and a projection
head g(-) are trained to maximize the agreement between representations z; and z; via a contrastive loss.
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Table 2: Datasets statistics.

. . Datasets | Category Graph Num. [ Avg. Node | Avg. Degree
The Role of Data Augmentat|on in GraphCL NCIT | Biochemical Molecules | 4110 20,87 1.08
PROTEINS | Biochemical Molecules 1113 39.06 1.86
COLLAB Social Networks | 5000 | 7449 32.99
RDT-B Social Networks 2000 429.63 115

) NCI1 PROTEINS ) RDT-B High
|dentical: 0.42 1.25 .-1:'.17I 2.47 2.27 1.01 1.07 -0.74 1.66 1.39 0.85 0.17 -0.26
AttrMask: 0.03 1.20 -0.62 -1.05 -1.14 2.43 1.89 0.85 1.15 1.51 1.37 1.53 0.47 -0.36 0.25
EdgePert=1.26 1.95 .-1-18 11.28 . 0.71 1.37 0.96 1.74 1.52 0.97 0.34 0.71
Subgraph: 1.63 1.17 2.10 1.90 1.62 2.54 2.30 2.20 z..’. 1.13 1.50 1.25 1.06 1.39
NodeDrop: 0.85 1.57 -0.86 -0.59 -0.17 12.00 2.27 1.62 1.31 1.30 1.85 1.45 1.66 1.53 1.31
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Figure 2: Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared
to training from scratch, under four datasets: NCI1, PROTEINS. COLLAB. and RDT-B. Pairing “Identical”
stands for a no-augmentation baseline for contrastive learning, where the positive pair diminishes and the
negative pair consists of two non-augmented graphs. Warmer colors indicate better performance gains. The
baseline training-from-scratch accuracies are 60.72%, 70.40%. 57.46%, 86.63% for the four datasets respectively.
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The Role of Data Augmentation in GraphCL Z Engineering

* Obs. 1. Data augmentations are crucial in graph contrastive learning;
 0Obs. 2. Composing different augmentations benefits more;

* Obs. 3. Edge perturbation benefits social networks but hurts some
biochemical molecules;

 Obs. 4. Applying attribute masking achieves better performance in denser
graphs;

 Obs. 5. Node dropping and subgraph are generally beneficial across
datasets.
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Table 3: Semi-supervised learning with pre-training & finetuning. Red numbers indicate the best performance

e Semi- ised  overlap wi 7

emi-su pe rvise and the number that overlap with the standard deviation of the best performance (comparable ones). 1% or 10%

is label rate; baseline and Aug. represents training from scratch without and with augmentations, respectively.

| ea rn | n g' Dataset | NCII PROTEINS DD | COLLAB RDT-B RDT-M5K GITHUB | MNIST CIFARTD
.

1% baseline | 60./22043 - - 57465023 - - 59251022 | 6039195 27365075

1% Aug. 60.49--0.46 . - 58.40+0.97 - - 56364042 | 674314036  2739-0.44

1% GAE | 61.63+0.84 . - 63.20+0.67 - - 50444044 | S7.5842.07  21.09+0.53

1% Infomax | 62.72+0.65 - - 61.70+0.77 - - 58.99+0.50 | 63.24+0.78  27.86-0.43

1% GraphCL 62.55+0.86 - - 6457+ 1.15 - - 58.56+0.59 83414033  30.0140.84
10% bascline 73.72+0.24 70.40+154  73.56+0.41 73.71+0.27 86.63+0.27 51334044 60.87+0.17 79.71+0.65  35.78+0.81
10% Aug. 73.59+0.32 70.29+0.64  74.30+0.81 74.19+0.13 87.74+0.39 52014020 60.91+0.32 83.99+2.19  34.2442.62
10% GAE 74364024 70.5140.17  74.5440.68 75.09+0.19 87.69+0.40  53.5840.13 63.89+0.52 86.674+0.93  36.35+1.04
10% Infomax 74.86+0.26 72.27+040 7 73.76+0.29 88.66+0.95 53.6140.31 65.21+0.88 83344024 41.07+0.48

10% GraphCL 74.634+0.25 74174034

74.2340.21 89.114+0.19 52.5540.45 65.814+0.79 093.1140.17 43.8740.77

: Table 4: Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA
° g y g g
U nSsu pe rVISed representation learning methods. and GIN pre-trained with GraphCL. The compared numbers are from the
corresponding papers under the same experiment setting.

representation

Dawsel | NCII PROTEINS DD MUTAG | COLLAB RDTB RDTMSK  IMDBB
. . GL - - - ST66E2.11 - 77341018 41.01E0.17 65875098
| earnin g WL 80.0140.50  72.92+0.56 - 80.724+3.00 - 68824041 46064021  72.30+3.44
DGK | 80314046 73.30+0.82 - 87444272 - 78044039 41274018 66.960.56
node2vec | S480E161  5749%357 - T2.63£10.20 - - - -
sub2vec | 52.84+147  53.034+555 - 61.05+15.80 - 71484041 36684042 55264154
graph2vec | 73224181 73304205 - §3.1549.25 - 75784103 47862026 71.10+0.54
InfoGraph | 76204106 74444031 7285+178 89014113 | 7065+1.13 82504142 S5346+1.03  73.03+087
GraphCL | 77875041 74391045 78625040  8680F134 | 7136115 89531084 55991028  71.14+044
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* Transfer learning:
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Table 5: Transfer learning comparison with different manually designed pre-training schemes.

Dataset | BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE [ PP1
No Pre-Train 65.8+4.5 74.0+0.8 63.4+0.6 57.3+1.6 58.0+44 71.8+2.5 75.3+19 70.1+£54 64.8+1.0
Infomax 68.8+0.8 75.31+05 62.7+04 5841408 69.9+3.0 753125 76.04+0.7 75.9+1.6 64.1+1.5
EdgePred 673124 76.0+0.6 64.1-+0.6 604407 64.1£3.7 741421 76.3+1.0 799409 65.7+1.3
AttrMasking 643128 76.74+04 642405 61.04+0.7 T1.84+4.1 747414 77.2+1.1 793+1.6 65.2+1.6
ContextPred 68.0+2.0 757407 6394106 60.9+0.6 659138 75.8+17 77.3+1.0 79.6+1.2 644413
GraphCL 69.681+0.67 73874066 624041057 60.53-1+0.88 75.994+2.65 69.80-+2.66 78474122 75384144 67.881+0.85

e Adversarial robustness.

Table 6: Adversarial performance under three adversarial attacks for GNN with different depth (following the
protocol in [60]). Red numbers indicate the best performance.

Two-Layer Three-Layer Four-Layer
Methods No Pre-Train GraphCL No Pre-Train ~ GraphCL No Pre-Train GraphCL
Unattack 93.20 94.73 98.20 98.33 98.87 99.00
RandSampling 78.73 80.68 9227 92.60 95.13 97.40
GradArgmax 69.47 69.26 64.60 89.33 95.80 97.00
RL-S2V 4293 42.20 41.93 61.66 70.20 84.86
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