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» Motivations » Experiments. The Role of Data Augmentation in Graph Contrastive Learning
* Graphs are abstracted representations of raw data with diverse nature, thus it is difficult to s We systematically assess the role of data augmentation for graph-structured data in our GraphCL framework.
design a GNN pre-training scheme generically beneficial to down-stream tasks [1,2]. * We achieve the following observations:
% Contrastive learning exploiting data- or task-specific augmentations to inject the desired (1) Data augmentations are crucial in graph contrastive learning: without any data augmentation
feature invariance can mitigate the challenge. graph contrastive learning is not helpful and often worse compared with training from scratch Table 2: Datasets statistics.
* Recently, contrastive learning has renewed a surge of interest in visual representation learning (2) Composing different augmentations benefits more: composing augmentation pairs of a
[3,4], while it is not straightforward to be directly applied to graph representation learning. graph rather than the graph and its augmentation further improves the performance. Datasets Category Graph Num. | Avg. Node | Avg. Degree
_ (3) Edge perturbation benefits social networks but hurts some biochemical molecules. PRE%NS giﬂfﬁﬂm?ﬂﬂ: ﬂﬁ{c‘m}ﬁ ‘]‘::2‘ gggg igg
» Method. Data Au agm entation for Grap hs (4) Applying attribute masking achieves better performance in denser graphs. e =149 3709
(5) Node dropping and subgraph are generally beneficial across datasets. RDT-B Social Networks 2000 429.63 115

< Data augmentation aims at creating novel and realistically rational data through applying certain
transformation without affecting the semantics label, remaining under-explored for graphs.

» We propose four general data augmentations for graphsto introduce different prior knowledge.

» We demonstrate that for different categories of graph datasets some data augmentations might

be more desired than others due to the diversity challenge.

Table 1: Overview of data augmentations for graphs.
Underlying Prior

)

(6) Unlike “harder” ones, overly simple contrastive tasks do not help.
* In total, we decide the augmentation pools as: node dropping and subgraph for biochemical molecules; all for dense social networks; and all except
attribute masking for sparse social networks.
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COLLAB

NCI1 RDT-B

ldentical{ 0.42 1.25 .-0.1? -1.44

AttrMask{ 0.03 1.20 -0.62 -1.05 -1.14

PROTEINS

2.47 2.27 1.01 1.07 -0.74 1.66 1.39 0.85 0.17 -0.26

Data augmentation Type 2.43 1.89 0.85 1.15 1.51 1.37 1.53 0.47 -0.36 0.25

Node dropping Nodes, edges Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations. EdgePert{-1.26 1.95 ..1,13. 1.28 2.97 0.71 1.37 0.96 1.74 1.52 0.97 0.34 0.71
Attribute masking Nodes Semantic robustness against losing partial attributes per node.

Subgraph Nodes, edges Local structure can hint the full semantics. Subgraph{1.63 1.17 2.10 1.90 1.62| {2.54 2.30 2.20 2.67 3.15 1.13 1.50 1.25 1.06 1.39

0.85 1.57 -0.86 -0.59 -0.17 2.00 2.27 1.62 1.31 1.30 1.66 1.53 1.31
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» Method. Graph Contrastive Learning

% Motivated by recent contrastive learning developments in visual representation learning [3,4],
we propose a graph contrastive learning framework (GraphCL) for (self-supervised) pre-training
of GNNSs.

% GraphCL consists of the four major components:

(1) Graph data augmentation to obtain two correlated views of a graph as a positive pair;

(2) GNN-based encoder extracting graph-level representation vectors for augmented graphs;
(3) Projection head to map augmented representations to another latent space where the
contrastive loss is calculated;

(4) Contrastive loss function enforcing maximizing the consistency between positive pairs
compare with negative pairs.

“ We show that GraphCL can be viewed as a kind of mutual information maximization between . _ _ _ _ _ _ _ _
the latent representations of two kinds of augmented graphs, and furthermore can be rewrited s We compare our proposed GraphCL, with state-of-the-art methods in the settings of semi-supervised, unsupervised, transfer learning and adversarial
’ robustness on graph classification.

as a general framework unifying a broad family of contrastive learning methods on graph- _ _ . L
structured data. *» Experiment results verify the state-of-the-art performance of our proposed framework in both generalizability and robustness.
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Figure 2: Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared
to training from scratch, under four datasets: NCI1, PROTEINS, COLLAB, and RDT-B. Pairing “Identical”
stands for a no-augmentation baseline for contrastive learning, where the positive pair diminishes and the
negative pair consists of two non-augmented graphs. Warmer colors indicate better performance gains. The
baseline training-from-scratch accuracies are 60.72%, 70.40%, 57.46%, 86.63% for the four datasets respectively.

» Experiments. Comparison with the State-of-the-art Methods
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Table 3: Semi-supervised learning with pre-training & finetuning. Red numbers indicate the best performance Table 4: Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA

| \ and the number that overlap with the standard deviation of the best performance (comparable ones). 1% or 10% representation learning methods, and GIN pre-trained with GraphCL. The compared numbers are from the
Brop Node & Edge : "~ e % 1s label rate; baseline and Aug. represents training from scratch without and with augmentations, respectively. corresponding papers under the same experiment setting.
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Table 5: Transfer learning comparison with different manually designed pre-training schemes, where the Table 6: Adversarial performance under three adversarial attacks for GNN with different depth (following the

Figure 1: A framework of graph contrastive learning. Two graph augmentations ¢;(-|G) and ¢, (-|G) are sampled compared numbers are from [9]. protocol in [60]). Red numbers indicate the best performance.

from an augmentation pool 7 and applied to input graph G. A shared GNN-based encoder f(-) and a projection Dataset | _ BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE | PP Two-Layer Three-Layer Four-Layer
head g(-) are trained to maximize the agreement between representations z; and z; via a contrastive loss. No Pre-Train | 658245 740508 634106 S73EL6_ 580%44 TI8E25 753+E190 701554 648L1.0 Methods No Pre-Train  GraphCL | No Pre-Train  GraphCL | No Pre-Train  GraphCL
Tnfomax 68.850.8 753505 62.710.4 584108 6090530  753%25 76.010.7 759416 641E15 Onattack 9330 5173 9830 9833 Y, 3900
EdgePred 67.3+2.4 76.0+0.6 64.140.6 60.440.7 64.1+3.7 74.142.1 76.3+1.0 79.9+0.9 65.7+1.3 : - i : 70 : 77
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[2] Yuning You*, Tianlong Chen*, Zhangyang Wang, Yang Shen. “When Does Self-Supervision Help Graph GraphCL 60.6810.67 73871066 62401057 60531088 7509E2.65 69.8012.66 78471122 75381144 | 67.881085 RL-S2V 42.93 42.20 41.93 61.66 70.20 84.86
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