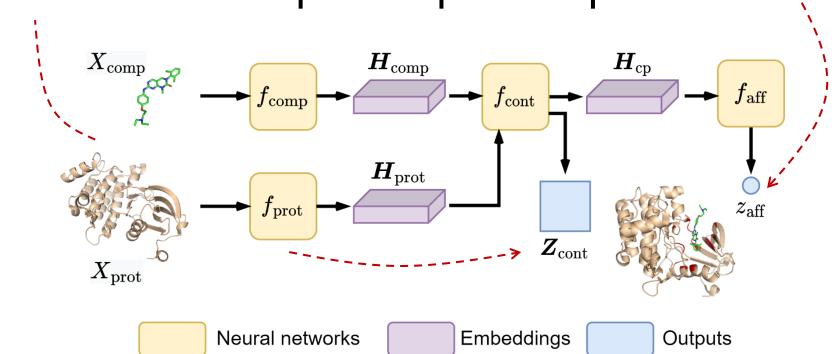
Yuning You, Yang Shen

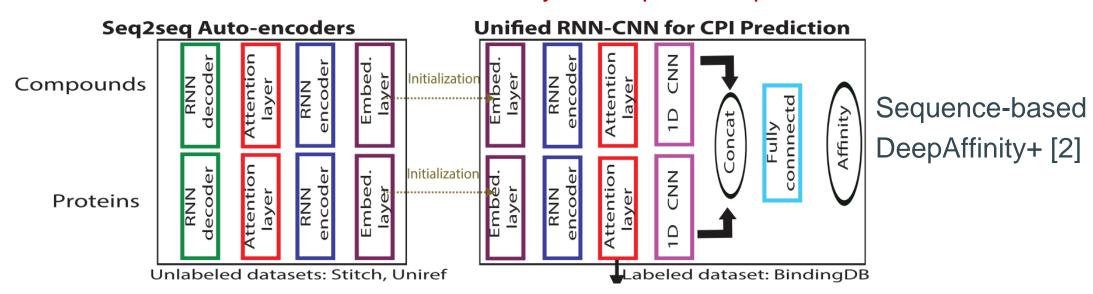
Task: Simultaneously predicting affinities and contacts for compound-protein pairs



- Most FDA-approved drug-target pairs are between molecules & proteins
- Atomic contacts (binding pockets) are interpretability for affinity prediction

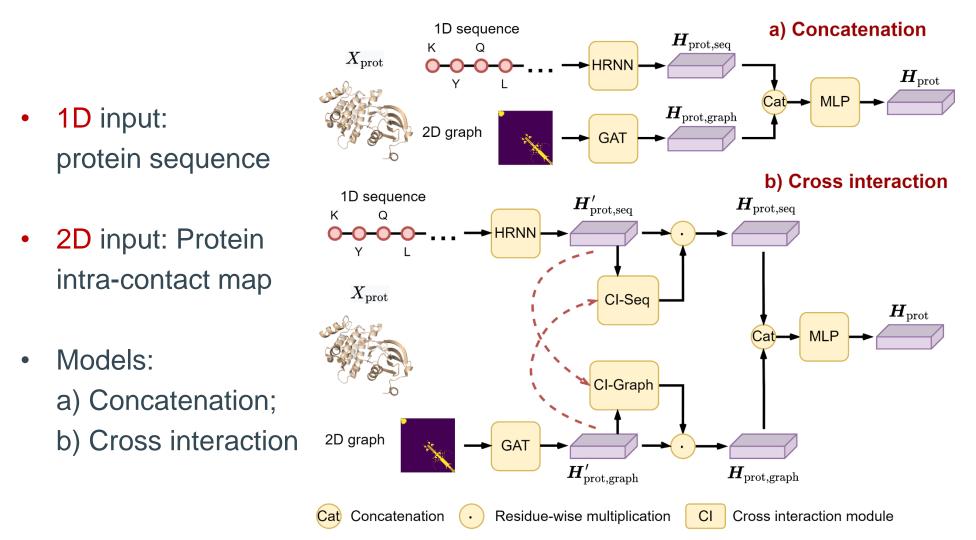
Challenges: Unaware of structures, limited in labels

- Contact prediction is highly structure-dependent
- Traditional structure-free methods rely on sequence inputs



- Affinity measurements for pairwise compound-protein data are sparse
- Even sparser in non-bonded atomic contacts from co-crystal structures

Solution I: Multi-modal learning to incorporate structure information

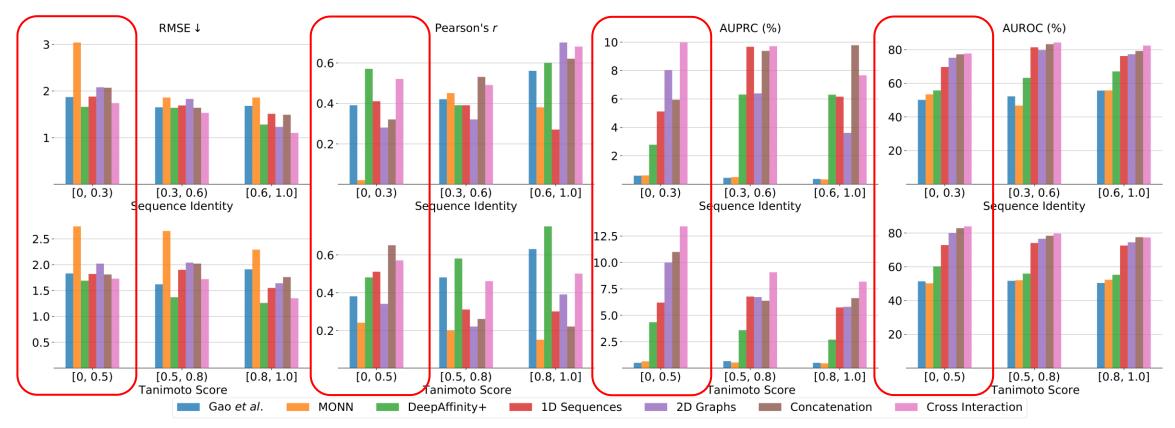


Cross interaction connections

Result I: 2D modality benefits contact prediction and 1D benefits affinity. 1D+2D achieves the best

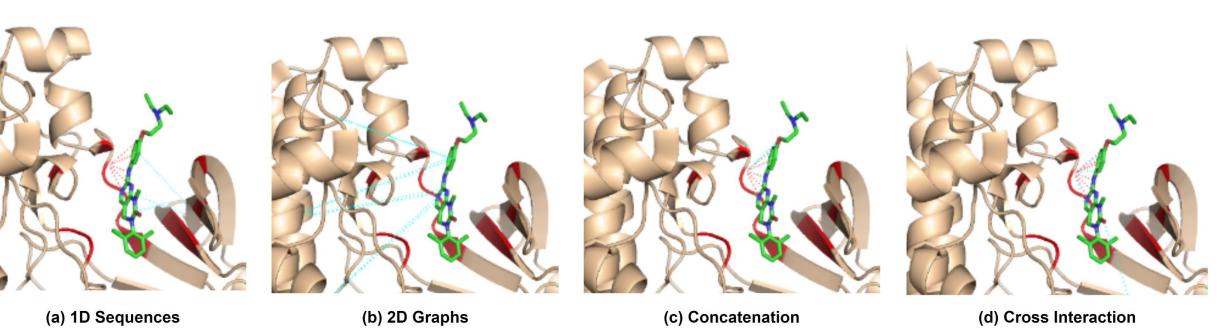
	~						
Methods	Seen-Protein Sets		Unseen-Protein Sets				
1,1001003	Seen-Both	Unseen-Compound	Unseen-Protein	Unseen-Both			
Affinity Prediction in RMSE (Pearson's r in parentheses)							
Gao et al.*	1.87 (0.58)	1.75 (0.51)	1.72 (0.42)	1.79 (0.42)			
MONN	1.44 (0.70)	1.28 (0.75)	1.67 (0.46)	1.75 (0.45)			
DeepAffinity+*	1.49 (0.70)	1.34 (0.71)	1.57 (0.47)	1.61 (0.52)			
1D Sequences	1.57 (0.67)	1.38 (0.73)	1.63 (0.44)	1.79 (0.40)			
Pred. 2D Graphs	1.49 (0.68)	1.37 (0.70)	1.75 (0.43)	1.93 (0.34)			
True 2D Graphs	1.69 (0.59)	1.62 (0.58)	1.88 (0.33)	1.99 (0.25)			
Concatenation	1.47 (0.68)	1.37 (0.71)	1.78 (0.47)	1.91 (0.40)			
Cross Interaction	1.55 (0.65)	1.43 (0.68)	1.56 (0.50)	1.62 (0.53)			
Contact Prediction in AUPRC (AUROC in parentheses, %)							
Gao et al.*	0.60 (51.57)	0.57 (51.50)	0.48 (51.60)	0.48 (51.55)			
MONN	0.98 (58.57)	0.99 (60.15)	0.99 (65.66)	0.98 (64.59)			
DeepAffinity+*	19.74 (73.78)	19.98 (73.80)	4.77 (60.01)	4.11 (59.09)			
1D Sequences	20.51 (79.01)	20.80 (80.00)	6.54 (73.03)	6.36 (73.41)			
Pred. 2D Graphs	17.29 (77.34)	17.46 (78.70)	8.78 (77.94)	7.05 (76.59)			
True 2D Graphs	21.41 (84.60)	21.33 (85.17)	10.52 (84.08)	9.40 (84.29)			
Concatenation	23.85 (80.90)	23.52 (81.64)	7.74 (80.59)	7.29 (78.95)			
Cross Interaction	23.49 (81.30)	23.29 (82.07)	12.43 (80.64)	9.60 (79.78)			
			1				

Performance advantage is preserved in the out-of-distribution domain (measured by designated similarity metrics between training and test data, see x-axis below)

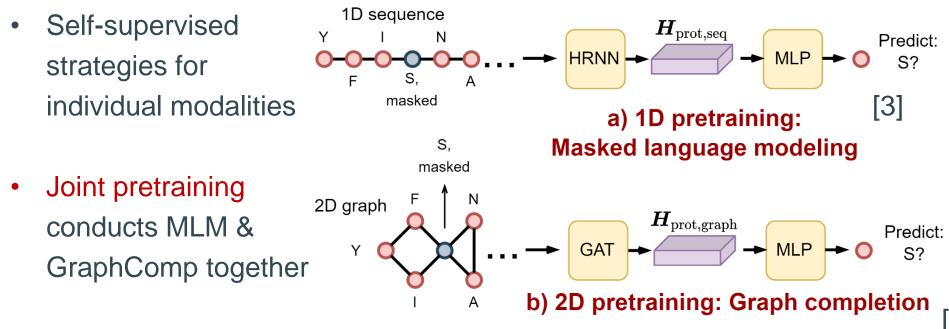


Case study for the compound-protein pair of LHL-LCK.

Cross-modality models identify contacts with higher precision



Solution II: Self-supervision for label scarcity



- Pretraining dataset: Pfam-A RP15 [5]
 - Smaller set (S): 60,137 sequences with measured structures
 - Larger set (L): 12,798,671 sequences

Result II: Multi-modal joint pretraining could further synergize 1D and 2D modalities

Cross Interaction	Seen-	Protein Sets	Unseen-Protein Sets		
Cross interaction	Seen-Both	Unseen-Compound	Unseen-Protein	Unseen-Both	
Affir	nity Prediction in	RMSE (Pearson's r in	parentheses)		
Non Pre-Train	1.57 (0.66)	1.46 (0.68)	1.63 (0.49)	1.64 (0.54)	
MLM-S	1.53 (0.64)	1.40 (0.68)	1.46 (0.56)	1.53 (0.58)	
GraphComp-S	1.62 (0.59)	1.44 (0.66)	1.60 (0.43)	1.67 (0.47)	
MLM+GraphComp-S	1.64 (0.58)	1.46 (0.65)	1.65 (0.39)	1.65 (0.50)	
MLM-L	1.59 (0.62)	1.46 (0.65)	1.62 (0.47)	1.63 (0.57)	
MLM+GraphComp-L	1.58 (0.62)	1.45 (0.66)	1.74 (0.33)	1.85 (0.32)	
Conta	act Prediction in	AUPRC (AUROC in pa	rentheses, %)		
Non Pre-Train	23.91 (79.48)	23.06 (80.60)	11.40 (77.73)	8.41 (76.42)	
MLM-S	23.78 (80.34)	23.33 (81.09)	7.73 (77.44)	6.44 (76.42)	
GraphComp-S	23.63 (79.71)	23.41 (81.31)	11.36 (76.67)	9.36 (76.00)	
MLM+GraphComp-S	24.13 (82.09)	23.65 (82.70)	11.38 (78.75)	10.83 (78.63)	
MLM-L	23.30 (80.40)	23.05 (81.18)	11.35 (81.01)	9.40 (79.46)	
MLM+GraphComp-L	23.71 (81.21)	23.22 (82.33)	13.47 (82.00)	11.17 (80.10)	

(Data not shown: Pretraining compound graphs further helped unseen sets)

More advanced pretraining techniques (e.g. GraphCL [6] for 2D modality) need to be further tailored for protein modeling

Tasks	GraphCom		phComp	GraphCL		GraphComp		GraphCL		
		SBoth	U.SComp.	SBoth	U.SComp.		U.SProt.	U.SBoth	U.SProt.	U.SBoth
Affinity	RMSE	1.62	1.44	1.53	1.41	RMSE	1.60	1.67	1.66	1.77
prediction	Pearson's r	0.59	0.66	0.67	0.70	Pearson's r	0.43	0.47	0.44	0.46
Contact	AUPRC (%)	23.63	23.41	18.15	17.30	AUPRC	11.36	9.36	11.09	8.55
prediction	AUROC (%)	79.71	81.31	76.04	75.96	AUROC	76.67	76.00	73.46	70.94

References

- [1] Cross-Modality and Self-Supervised Protein Embedding for Compound–Protein Affinity and Contact Prediction, *Bioinformatics* 2022
- [2] Explainable Deep Relational Networks for Predicting Compound–Protein Affinities and Contacts, JCIM 2020
- [3] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, *ACL* 2019
- [4] When Does Self-Supervision Help Graph Convolutional Networks? *ICML* 2020
- [5] The Pfam protein families database, NAR 2012
- [6] Graph Contrastive Learning with Augmentations, NeurlPS 2020