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Results: Multi-Modal Features

Does Inter-Protein Contact Prediction Benefit from
Multi-Modal Data and Auxiliary Tasks?

Arghamitra Talukder, Rujie Yin, Yuanfei Sun, Yang Shen, Yuning You
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Given two proteins, we extract three of their modalities as features:
« protein sequences (encoded with HRNN) [1], evolutionary (with ProtBERT) [2] and e Multi-modal incorporating model (NHBG) improved 18.75% compared
i i i to single modality (H)
structural information (with GAT) [3] References

« For optimization objectives, we use multiple auxiliary tasks (distances and angles)
« Knowledge of binary protein-protein interaction (PPI) is introduced via pre-training.

* Best performing model (NHBG) improved 34.38% compared to single

modality (H)
* Best test AUPRC also surpasses SOTA score by 26.47%
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