

Does Inter-Protein Contact Prediction Benefit from Multi-Modal Data and Auxiliary Tasks?

Arghamitra Talukder, Rujie Yin, Yuanfei Sun, Yang Shen, Yuning You

Hypotheses

Proteins are essential biomolecules of life. Proteins are represented by 1D sequences folding into 3D structures (multi-modality) and interact to form assemblies to function (multi-scale functionality). Unlike protein structure prediction, protein complex/assembly structure prediction has yet seen as successful technology breakthroughs. We hypothesize improvements might root from two perspectives:

- incorporating **multi-modal features** for inputs, and
- Synergizing contact predictions with **auxiliary predictive tasks**.

Assay Pipeline

Given two proteins, we extract three of their modalities as features:

- protein sequences (encoded with HRNN) [1], evolutionary (with ProtBERT) [2] and structural information (with GAT) [3]
- For optimization objectives, we use multiple auxiliary tasks (distances and angles)
- Knowledge of binary protein-protein interaction (PPI) is introduced via pre-training.

Model Architectures in Experiments

A general framework of model architecture using encoders, common and task-specific MLP layers.

Results: Multi-Modal Features

Multi-modal impact on AUPRC (%) distribution of test set.

- Multi-modal incorporating model (NHBG) improved 18.75% compared to single modality (H)
- Best performing model (NHBG) **improved 34.38%** compared to single modality (H)
- Best test AUPRC also surpasses SOTA score by 26.47%

Results: Multi-Modal Features

AUPRC improvement with additional modalities on increasingly difficult test PPI levels

- samples have improved AUPRC with HB
- HBG in comparison to HB results in 66.6% of difficult, 33.3% of mid difficult and 69% of rigid PPI samples AUPRC improvement

Results: Auxiliary Tasks

We do not observe the performance gains from any auxiliary tasks.

- Fine-grained distances and angles prediction might enforce more complicated (pseudo) predictions hurting generalizability
- Binary PPI outcome is overly simplified to indicate inter-contact maps

References

[1] Salah Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for longterm dependen-cies. Advances in neural information processing systems, 8, 1995.

[2] Ahmed Elnaggar et al. Prottrans: towards cracking the language of lifes code through self-supervised deep learning and high performance

computing. IEEE transactions on pattern analysis and machine intelligence, 2021 [3] Petar Veličcković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017..

