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➢ Background
❖ Computational prediction of compound-protein interactions (CPI) has been of great interest 

partly due to its potential impact on accelerating drug discovery, with recent progress including:

❖ We focus on interpretable compound-protein affinity and contact (CPAC) prediction 

without the need of compound-protein co-crystal or docked structures, even where unbound 

structures of proteins are not assumed here.

❖ We note that earlier works for this task represent proteins as 1D amino-acid sequences, 

whereas structure-aware representations of proteins (such as sequence-predicted residue-

residue 2D contact maps) can be useful.

➢ Contributions
❖ We treat protein data as available in both modalities of 1D sequences and (sequence-

predicted) 2D contact maps, with the following two questions asked and addressed:

(Q1) How do the two modalities compare with each other for the task of structure-free

interpretable CPI prediction, i.e., compound-protein affinity and contact (CPAC) prediction?

(A1) The 1D or 2D modality of proteins did not dominate each other for proteins seen in the

training set; however, the 1D and 2D modality-based models tend to generalize better for

unseen proteins in affinity prediction and contact prediction, respectively

(Q2) Is there an advantage to exploit both modalities?

(A2) For the first time, we propose cross-modality learning models for the task of structure-

free interpretable CPI prediction, to capture and fuse the different information from both

1D&2D modalities of proteins.

➢ Pipeline Overview
❖ Given a compound-protein pair, a CPAC model is targeted at making prediction for both the 

intermolecular affinity and (atom-residue) contacts, comprising of the following three major 

components:

(1) Neural-network encoders that separately extract embeddings for the compound and

protein. GNN is adopted for compound 2D chemical graphs and HRNN is chosen for protein

1D amino-acid sequences.

(2) Interaction module taking the encoded embeddings as inputs, employing joint attention to

output the interaction matrix and joint embedding to extract embeddings for compound-

protein pairs.

(3) Affinity module that predicts the affinity given the joint embedding, consisting of 1D

convolutional, pooling layers, and MLP.

❖ After the CPAC model forwardly generates the outputs, true labels are compared to calculate 

the loss. The model is trained end to end while the training loss is minimized.

➢ Single-Modality Models and Performances Protein

➢ Cross-Modality Models

➢ Experiment Results
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❖ We follow DeepAffinity+ [1] to use HRNN to encode 1D amino-acid sequences, and employ an expressive GNN model, GAT, to process 2D contact maps.

❖ 2D contact map prediction is done by RaptorX-contact [2] that exploits both sequence and evolutionary information.

❖ We compare the empirical results between taking 1D amino-acid sequences

and 2D contact maps as protein inputs, with the following observations:

(1) For affinity prediction, 1D sequences and 2D graphs did not yield

major differences especially in Pearson’s r. One conjecture is that

affinity prediction for unseen-protein cases are not as challenging as

intermolecular contact prediction to show the benefit of the 2D modality.

(2) For contact prediction, encoding proteins as 1D sequences performed better in seen proteins, (i.e. the proteins in compound-protein pairs

at the inference phase are involved in the training compound-protein pairs). Meanwhile, encoding 2D protein contact maps (graphs) outperformed

doing that to 1D protein sequences for unseen proteins. We conjecture that the sequential information learned from the encoder could be more

accurate toward intermolecular contact prediction for close or even distant homologs of seen proteins but it is less general to unseen proteins.

❖ Since both sequential dependency in 1D amino-acid sequences and structural topology in 2D contact maps are important information for proteins, it is 

natural to propose a cross-modality learning framework that captures and fuses the information from 1D & 2D modalities for better performances.

(1) Concatenation. A simple fusion model is to concatenate the extracted embeddings

of the 1D and 2D modalities that are encoded by HRNN and GAT, respectively.

Concatenation is commonly used in previous work to preserve information from

different sources. The concatenated output is fed to a MLP for the final protein

embedding.

(2) Cross interaction. Although the concatenation strategy preserves the information

of individual modalities, the encoding processes for the two modalities are separate.

However, the different modalities of proteins are intrinsically correlated with each

other and could be coupled in a properly-designed representation-learning process.

Therefore, we have introduced a cross interaction module to facilitate the encoder

to learn protein embeddings from correlated data (1D and 2D modalities).

❖ We compare our single-modality and cross-modality models with two latest SOTAs for the CPAC problem, with tasks involving affinity, contact, and 

binding-site predictions.

❖ Our experiments show that cross-modality models can exploit the correlation between both modalities and enjoy the benefits of both modalities even when 

a simple concatenation strategy is adopted for the two embeddings.


