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Introduction & Motivation

In this project, we focus on learning a multi-modal representation of proteins, specifically how to integrate different pretrained single-modality encoders

and how to explore heterogeneity for protein modalities efficiently. We compare sequential and parallel integration paradigms and propose a novel data

augmentation that leverages domain-informed protein homology classes (families of similar sequences and superfamilies of similar structures) for intra- and

inter-modality contrast. Numerical results indicate that the novel views and the novel ways to compose views can facilitate multi-modal synergy toward

better downstream performances.

Training Diagram & Training Objective
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Figure 1. (a) uses multi-view contrast; newly proposed (b) uses biological domain

knowledge (protein homology) as defined in InterPro to inform the design of positive and

negative view-pairs, and (c) adapts a CLIP cross-modal contrastive learning on top of (a)

and (b) that can be done for either intra-modality contrastive learning (sequence or

structure). We further propose to compose views in (a) and (b) with (c) for (additional)

inter-modality contrastive learning.
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
Let X = {x1, x2, . . . , xN} represent the set of proteins in our dataset, and

xi
seq be the sequence form of xi and xi

struc be the structural description. Two

encoders Fseq : Xseq → Zseq and Fstruc : Xstruc → Zstruc, where Zseq

and Zstruc are the hidden representation space. Two projection heads gseq :
Zseq → Z and gstruc : Zstruc → Z , where Z is the shared hidden space

to perform inter-modality contrastive learning. Cf and Cs denote the sets of

families and superfamilies.

Sequential v.s. Parallel Integration
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Figure 2. shows the order sensitivity of sequential integration. Though the number of parameters is the same between the two sequential orders, the Sequence-to-Structure order was

better performing. To determine the optimal order in sequential integration, n! sequential models need to be trained over all permutations (n = 2 for sequences–structure and n = 3 for
videos of images, texts, and audios). In contrast, parallel integration is order-invariant, only needs to be trained once, and can outperform the best serial integration.

Intra- and Inter-Modality Contrast
Table 1. Combining Intra- and Inter-Modality Contrast: ¬ and ­ are baselines, whereas

®–° are our multimodal models that continue training parallel ESM-GearNet on 55k

tinyAlphaFoldDB proteins.

Method
GO-BP GO-MF GO-CC EC

Fmax AUPR Fmax AUPR Fmax AUPR Fmax AUPR

¬
GearNet-Edge(Reproduce) 0.493 0.234 0.635 0.531 0.447 0.242 0.845 0.834

ESM-1b(Reproduce) 0.394 0.277 0.519 0.521 0.403 0.326 0.809 0.824

­ ESM-GearNet (no continue training) 0.483 0.272 0.628 0.561 0.444 0.281 0.866 0.875

® ESM-GearNet(N/A, LMm) 0.500 0.226 0.632 0.540 0.450 0.253 0.850 0.850

¯
ESM-GearNet(LMv, LMm) 0.503 0.229 0.627 0.547 0.440 0.255 0.846 0.827

ESM-GearNet(LBio, LMm) 0.491 0.241 0.633 0.526 0.450 0.287 0.843 0.836

° ESM-GearNet(LBio◦Mv, LMm) 0.492 0.224 0.621 0.565 0.447 0.247 0.840 0.822

Table 2. Mean values and standard deviations of Fmax compared between the starting point

(no continual training) and one of our models (° in Table 1).

Method
GO-BP GO-MF GO-CC EC

Fmax Fmax Fmax Fmax

ESM-GearNet(no train) 48.38%(±0.17%) 64.48%(±0.27%) 45.49%(±0.24%) 86.37%(±0.06%)

ESM-GearNet(LBio◦Mv, LMm) 48.59%(±0.12%) 64.45%(±0.24%) 45.92%(±0.25%) 86.92%(±0.23%)

Table 3. Downstream fine-tuned performances.

Augmentations Tasks GO-BP GO-MF GO-CC EC

Mm (Identity) 0.500 (0.226) 0.632 (0.540) 0.450 (0.253) 0.850 (0.850)

Mm ◦ Mv (Identity cropping) 0.498 (0.229) 0.638 (0.514) 0.448 (0.263) 0.843 (0.831)

Mm ◦ Bio (Homology) 0.503 (0.222) 0.633 (0.556) 0.444 (0.263) 0.845 (0.830)

Mm ◦ Bio ◦ Mv (Homology cropping) 0.501 (0.226) 0.643 (0.530) 0.448 (0.250) 0.841 (0.827)

Dataset
Table 4. Statistics of TinyAlphaFoldDB data with homology classifications

Size

Data
Foldseek Family Superfamily Prot Has Family Prot Has Superfamily

# samples 55,189 9,361 2,363 26,883 30,068

Weapply foldseek clustering, a structural-alignment-based clustering, onAl-

phaFold database v1 and v2 of predicted protein structures. In this way, we

select about 55k cluster representatives out of 1M instances. We used Inter-

Pro to classify those 55K proteins into families and superfamilies.

Conclusion & Discussion
In this work, we aim at multimodal representation learning for proteins

while overcoming resource limitations and modality heterogeneity.

We first investigate and show the effects of different model integration

strategies, in which parallel integration stands out. Next, we lever-

age domain-informed protein homology classes to design novel data

views, which further addresses a type of under-explored heterogeneity

for protein modalities. Numerical results indicate that the novel views

and the novel ways to compose views can facilitate multi-modal syn-

ergy toward better downstream performances.
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