Research Motivations & Questions

= Motivation: Despite recent progress in LLM-GNN hybrids, the true benefit of structural information remains
uncertain.

= Research Question: Do LLMs truly need explicit structural encoding, or can semantic signals alone achieve
strong graph reasoning?

* Findings: Structural encodings provide little to no performance gain and can even harm results when rich
semantics exist.

= Contribution: This study systematically challenges the necessity of structural modeling and advocates a
semantics-centered paradigm for LLM-based graph learning.
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Figure 1. A common paradigm for aligning graph type data into LLMs.

Template-based Encodings

= ND (Neighborhood Detail): Uses a handcrafted k-hop B-tree subgraph and Laplacian positional encodings to
encode structural context.

= HN (Hop Neighbor): Randomly samples a subset of k-hop neighbors to form an order-invariant sequence of
node descriptions, removing explicit graph structure encodings.

= CO (Center Only): Provides only the central node description, entirely omitting neighbor information.

Table 1. ND underperforms HN and CO, especially on heterophilic graphs, showing that LLMs rely more on semantic cues than
structural encodings, with isolated node semantics and unordered neighbor aggregation often sufficing.

Node Classification

Link Prediction

Setting Dataset

ND HN-1 CO ND HN-1
Cora 88.07% (0.74%) 88.56% (0.80%) 85.42% (1.78%)  85.56% (1.33%) 87.27% (1.56%)
Homophilic Citeseer 80.31% (0.81%) 80.20% (0.94%) 77.74% (0.31%)|86.73% (0.63%) 88.79% (0.84%)
Pubmed 92.56% (0.71%) 94.80% (0.17%) 94.84% (0.04%)|88.25% (0.31%) 90.98% (0.38%)
Shool 66.43% (3.69%) 82.02% (12.79%) 91.13% (1.66%) | 68.61% (0.21%) 68.12% (1.51%)
Heterophilic Roman Empire [48.56% (1.17%) 59.70% (2.42%) 62.24% (0.19%)|81.59% (0.50%) 83.81% (0.12%)
Amazon Ratings | 40.97% (0.56%) 41.67% (0.22%) 40.38% (1.14%)80.26% (2.01%) 84.51% (0.53%)
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Table 2. Replacing GNNs with simple MLPs in the Graphloken framework shows comparable performance, indicating that LLMs can rely

GNN-based Encodings

on semantic representations alone without explicit structural modeling. Best results are bolded, second best are underlined.
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Figure 2. Increasing adapter depth in Graphloken degrades performance with GNNs but has little effect with MLPs, suggesting that rich

Setting Dataset Node Classification

MLP GCN GAT GIN
Cora 87.09% (0.66%) 87.64% (0.84%) 88.25% (0.53%) 83.03% (5.41%)
Homophilic Citeseer 79.39% (1.38%) 80.20% (0.13%) 79.74% (0.41%) 79.32% (1.11%)
Pubmed 94.76% (0.10%) 92.24% (1.23%) 92.01% (0.24%) 91.40% (0.63%)
Shool 90.17% (3.62%) 67.87% (3.24%) 64.75% (0.00%) 70.02% (2.19%)
Heterophilic Roman Empire [65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)
Amazon Ratings  40.78% (0.35%) 40.52% (0.51%) 40.71% (0.23%) 38.76% (0.18%)

Across Datasets 76.26% 6/.50% 6/7.07% 68.24%
Setting Datacet Link Prediction
MLP GCN GAT GIN
Cora 90.72% (0.85%) 90.51% (1.19%) 91.05% (0.93%) 87.86% (1.20%)
Homophilic Citeseer 87.67% (2.71%) 89.32% (0.53%) 88.53% (0.46%) 78.34% (1.99%)
Pubmed 89.14% (0.19%) 89.11% (0.37%) 88.58% (0.38%) 87.54% (0.55%)
Shool 59.40% (1.92%) 59.40% (3.26%) 62.78% (3.98%) 56.55% (1.25%)
Heterophilic Roman Empire | 51.60% (0.62%) 52.64% (0.68%) 51.00% (1.02%) 53.63% (0.24%)
Amazon Ratings | 72.59% (0.34%) 72.10% (1.04%) 66.24% (11.19%) 71.51% (0.19%)
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semantic representations alone suffice for LLM-based graph reasoning, while explicit structural augmentation can be unnecessary or
detrimental.

Findings on Text-Attributed Graphs Experiments

= Template Encodings: ND underperforms structure-free variants (HN, CO), indicating structural priors may
hinder LLM reasoning.
= Semantic Reliance: LLMs perform well on TAGs using only node semantics, treating graph reasoning as a
set-based task.
= GNN Encodings: Replacing GNNs with MLPs vields similar results, showing limited benefit from structural
modeling.
= Depth Effect: Deeper GNN adapters reduce performance, suggesting overfitting and diminishing returns.
= Conclusion: Structural encodings add little value—LLMs reason effectively from semantic cues alone.
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Natural Molecular Graphs

Table 3. LLMs can effectively perform molecular graph tasks using only rich node-level semantic embeddings, with explicit structural

modeling providing little to no additional benefit.

Dataset

Molecular Property Prediction

MLP

GCN

GIN

GAT

BACE
BBBP
HIV

58.99% (1.66%) 58.77% (9.13%) 58.99% (5.52%) 57.46% (3.62%)
54.57% (1.38%) 57.84% (0.49%) 60.29% (0.49%) 51.96% (1.47%)
96.85% (0.01%) 96.81% (0.03%) 96.79% (0.00%) 26.82% (0.03%)

Pretrained Encoders and Geometric Deep Learning

Figure 3. Left: For molecular graphs with intrinsic structural priors, LLMs using semantic embeddings from pretrained language models
outperform those using graph-specific encoders, highlighting that semantic content dominates over explicit structural information.
Right: Even on structurally demanding datasets like Davis DTI, LLMs using sequence-based semantic encodings perform comparably to
or better than structure-based encoders, suggesting that current graph benchmarks often overemphasize structural reasoning.
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= Semantic Dominance on Molecular Graphs: Even simple MLPs without structural modeling match or

Pretrained Graph Encoder v.s. Pretrained Language Encoder
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Insights for Experiments on Molecule and Protein Graphs

outperform GNN-based adapters, showing LLMs can rely solely on semantic embeddings.
= Pretrained Encoders: Comparing GraphMVP (graph encoder) and TinyBERT (language encoder) reveals no

consistent advantage for structural pretraining, even in chemistry.

Sequence

= Broader Implication on Geometric Deep Learning: Structural information offers marginal gains, calling for

benchmarks that better capture relational and semantic reasoning.

= Key Insight: High-quality semantic embeddings, not explicit topology, primarily determine LLM performance
on graph reasoning tasks.

Scaling Ineffectiveness & Semantic Content

Table 4. Switching LLM backbones preserves our finding that structure may be unnecessary for LLMs processing graphs. Even with
weak semantic content, LLMs still reveal the same pattern.

Model Architecture Dataset Node Classification Link Prediction
ND HN-1 ND HN-1
Llama2-7B Cora 187.76%(0.21%) 88.01%(0.56%)|85.48%(0.38%) 87.04%(0.75%)
School | 70.98%(0.83%) 92.09%(2.49%) | 61.82%(2.88%) 69.09%(1.92%)
Llama2-13B Cora |87.58%(0.59%) 87.45%(0.19%) | 84.24%(0.89%) 86.05%(0.55%)
School | 69.30%(3.24%) 89.45%(3.40%) 61.21%(1.28%) 67.15%(1.52%)

Semantic Content Dataset

Node Classification

Link Prediction

ND HN-1 ND HN-1
charce Cora |83.96%(2.74%) 82.17%(0.56%)|69.19%(1.15%) 74.81%(0.85%)
P School |56.95%(6.19%) 73.62%(7.21%) 63.63%(0.63%) 65.09%(3.93%)
Ul Cora |83.39%(0.37%) 84.81%(0.46%)|70.81%(1.89%) 75.84%(0.74%)

School | 59.47%(3.97%) 60.19%(1.10%) | 63.15%(5.91%) 70.06%(3.30%)

More Recent LLMs and Approaches to Better Leverage Structures

Figure 4. Left: Though reasoning model can perform structured decision-making, it does not rely on structure information. Right:
Altering the node sequence via GDC can gain some enhancement at a time.
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Table 5. Our findings hold consistently on larger text-attributed graphs, suggesting that structural information contributes only
marginally to LLMs’ graph inference.

Dataset

Node Classification

ND HN-1

CcO

Products
ArXiv

83.45% (0.39%) 83.87% (0.24%) 80.10% (0.27%)
75.65% (0.50%) 75.41% (0.21%) 74.46% (0.18%)

Ablation Summarization

= Scaling Ineffective: Increasing LLaMA model size from /B to 13B does not improve structural sensitivity;
structure-free templates often perform better.
= Semantic Content: Even with sparse node descriptions, structure-free templates match or exceed
structure-aware ones, showing LLMs rely mainly on semantics.
= | arge Reasoning Models: Even reasoning-oriented models (e.g., Nemotron-7/B) gain little from explicit
structural encodings like Laplacian embeddings.

= Better Leveraging Structure: Graph Diffusion Convolution (GDC) modestly improves performance by

emphasizing long-range dependencies, suggesting minimal but useful structural cues.
= Dataset Size: Larger graph datasets (Products, ArXiv) show no significant performance gap between
structure-aware and structure-free settings.
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