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Research Motivations & Questions

Motivation: Despite recent progress in LLM–GNN hybrids, the true benefit of structural information remains

uncertain.

Research Question: Do LLMs truly need explicit structural encoding, or can semantic signals alone achieve

strong graph reasoning?

Findings: Structural encodings provide little to no performance gain and can even harm results when rich

semantics exist.

Contribution: This study systematically challenges the necessity of structural modeling and advocates a

semantics-centered paradigm for LLM-based graph learning.
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Figure 1. A common paradigm for aligning graph type data into LLMs.

Template-based Encodings

ND (Neighborhood Detail): Uses a handcrafted k-hop B-tree subgraph and Laplacian positional encodings to

encode structural context.

HN (Hop Neighbor): Randomly samples a subset of k-hop neighbors to form an order-invariant sequence of

node descriptions, removing explicit graph structure encodings.

CO (Center Only): Provides only the central node description, entirely omitting neighbor information.

Table 1. ND underperforms HN and CO, especially on heterophilic graphs, showing that LLMs rely more on semantic cues than

structural encodings, with isolated node semantics and unordered neighbor aggregation often sufficing.

Setting Dataset
Node Classification Link Prediction

ND HN-1 CO ND HN-1

Homophilic

Cora 88.07% (0.74%) 88.56% (0.80%) 85.42% (1.78%) 85.56% (1.33%) 87.27% (1.56%)

Citeseer 80.31% (0.81%) 80.20% (0.94%) 77.74% (0.31%) 86.73% (0.63%) 88.79% (0.84%)

Pubmed 92.56% (0.71%) 94.80% (0.17%) 94.84% (0.04%) 88.25% (0.31%) 90.98% (0.38%)

Heterophilic

Shool 66.43% (3.69%) 82.02% (12.79%) 91.13% (1.66%) 68.61% (0.21%) 68.12% (1.51%)

Roman Empire 48.56% (1.17%) 59.70% (2.42%) 62.24% (0.19%) 81.59% (0.50%) 83.81% (0.12%)

Amazon Ratings 40.97% (0.56%) 41.67% (0.22%) 40.38% (1.14%) 80.26% (2.01%) 84.51% (0.53%)

Across Datasets 69.48% 74.49% 75.29% 81.83% 83.91%

GNN-based Encodings

Table 2. Replacing GNNs with simple MLPs in the GraphToken framework shows comparable performance, indicating that LLMs can rely

on semantic representations alone without explicit structural modeling. Best results are bolded, second best are underlined.

Setting Dataset
Node Classification

MLP GCN GAT GIN

Homophilic

Cora 87.09% (0.66%) 87.64% (0.84%) 88.25% (0.53%) 83.03% (5.41%)

Citeseer 79.39% (1.38%) 80.20% (0.13%) 79.74% (0.41%) 79.32% (1.11%)

Pubmed 94.76% (0.10%) 92.24% (1.23%) 92.01% (0.24%) 91.40% (0.63%)

Heterophilic

Shool 90.17% (3.62%) 67.87% (3.24%) 64.75% (0.00%) 70.02% (2.19%)

Roman Empire 65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)

Amazon Ratings 40.78% (0.35%) 40.52% (0.51%) 40.71% (0.23%) 38.76% (0.18%)

Across Datasets 76.26% 67.50% 67.07% 68.24%

Setting Dataset
Link Prediction

MLP GCN GAT GIN

Homophilic

Cora 90.72% (0.85%) 90.51% (1.19%) 91.05% (0.93%) 87.86% (1.20%)

Citeseer 87.67% (2.71%) 89.32% (0.53%) 88.53% (0.46%) 78.34% (1.99%)

Pubmed 89.14% (0.19%) 89.11% (0.37%) 88.58% (0.38%) 87.54% (0.55%)

Heterophilic

Shool 59.40% (1.92%) 59.40% (3.26%) 62.78% (3.98%) 56.55% (1.25%)

Roman Empire 51.60% (0.62%) 52.64% (0.68%) 51.00% (1.02%) 53.63% (0.24%)

Amazon Ratings 72.59% (0.34%) 72.10% (1.04%) 66.24% (11.19%) 71.51% (0.19%)

Across Datasets 75.19% 75.51% 74.70% 72.57%
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Figure 2. Increasing adapter depth in GraphToken degrades performance with GNNs but has little effect with MLPs, suggesting that rich

semantic representations alone suffice for LLM-based graph reasoning, while explicit structural augmentation can be unnecessary or

detrimental.

Findings on Text-Attributed Graphs Experiments

Template Encodings: ND underperforms structure-free variants (HN, CO), indicating structural priors may

hinder LLM reasoning.

Semantic Reliance: LLMs perform well on TAGs using only node semantics, treating graph reasoning as a

set-based task.

GNN Encodings: Replacing GNNs with MLPs yields similar results, showing limited benefit from structural

modeling.

Depth Effect: Deeper GNN adapters reduce performance, suggesting overfitting and diminishing returns.

Conclusion: Structural encodings add little value—LLMs reason effectively from semantic cues alone.

Natural Molecular Graphs

Table 3. LLMs can effectively perform molecular graph tasks using only rich node-level semantic embeddings, with explicit structural

modeling providing little to no additional benefit.

Dataset
Molecular Property Prediction

MLP GCN GIN GAT

BACE 58.99% (1.66%) 58.77% (9.13%) 58.99% (5.52%) 57.46% (3.62%)

BBBP 54.57% (1.38%) 57.84% (0.49%) 60.29% (0.49%) 51.96% (1.47%)

HIV 96.85% (0.01%) 96.81% (0.03%) 96.79% (0.00%) 96.82% (0.03%)

Pretrained Encoders and Geometric Deep Learning

Figure 3. Left: For molecular graphs with intrinsic structural priors, LLMs using semantic embeddings from pretrained language models

outperform those using graph-specific encoders, highlighting that semantic content dominates over explicit structural information.

Right: Even on structurally demanding datasets like Davis DTI, LLMs using sequence-based semantic encodings perform comparably to

or better than structure-based encoders, suggesting that current graph benchmarks often overemphasize structural reasoning.
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Insights for Experiments on Molecule and Protein Graphs

Semantic Dominance on Molecular Graphs: Even simple MLPs without structural modeling match or

outperform GNN-based adapters, showing LLMs can rely solely on semantic embeddings.

Pretrained Encoders: Comparing GraphMVP (graph encoder) and TinyBERT (language encoder) reveals no

consistent advantage for structural pretraining, even in chemistry.

Broader Implication on Geometric Deep Learning: Structural information offers marginal gains, calling for

benchmarks that better capture relational and semantic reasoning.

Key Insight: High-quality semantic embeddings, not explicit topology, primarily determine LLM performance

on graph reasoning tasks.

Scaling Ineffectiveness & Semantic Content

Table 4. Switching LLM backbones preserves our finding that structure may be unnecessary for LLMs processing graphs. Even with

weak semantic content, LLMs still reveal the same pattern.

Model Architecture Dataset
Node Classification Link Prediction

ND HN-1 ND HN-1

Llama2-7B
Cora 87.76%(0.21%) 88.01%(0.56%) 85.48%(0.38%) 87.04%(0.75%)

School 70.98%(0.83%) 92.09%(2.49%) 61.82%(2.88%) 69.09%(1.92%)

Llama2-13B
Cora 87.58%(0.59%) 87.45%(0.19%) 84.24%(0.89%) 86.05%(0.55%)

School 69.30%(3.24%) 89.45%(3.40%) 61.21%(1.28%) 67.15%(1.52%)

Semantic Content Dataset
Node Classification Link Prediction

ND HN-1 ND HN-1

sparse
Cora 83.96%(2.74%) 82.17%(0.56%) 69.19%(1.15%) 74.81%(0.85%)

School 56.95%(6.19%) 73.62%(7.21%) 63.63%(0.63%) 65.09%(3.93%)

full
Cora 83.39%(0.37%) 84.81%(0.46%) 70.81%(1.89%) 75.84%(0.74%)

School 59.47%(3.97%) 60.19%(1.10%) 63.15%(5.91%) 70.06%(3.30%)

More Recent LLMs and Approaches to Better Leverage Structures

Figure 4. Left: Though reasoning model can perform structured decision-making, it does not rely on structure information. Right:

Altering the node sequence via GDC can gain some enhancement at a time.
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Large Text-Attributed Graphs

Table 5. Our findings hold consistently on larger text-attributed graphs, suggesting that structural information contributes only

marginally to LLMs’ graph inference.

Dataset
Node Classification

ND HN-1 CO

Products 83.45% (0.39%) 83.87% (0.24%) 80.10% (0.27%)

ArXiv 75.65% (0.50%) 75.41% (0.21%) 74.46% (0.18%)

Ablation Summarization

Scaling Ineffective: Increasing LLaMA model size from 7B to 13B does not improve structural sensitivity;

structure-free templates often perform better.

Semantic Content: Even with sparse node descriptions, structure-free templates match or exceed

structure-aware ones, showing LLMs rely mainly on semantics.

Large Reasoning Models: Even reasoning-oriented models (e.g., Nemotron-7B) gain little from explicit

structural encodings like Laplacian embeddings.

Better Leveraging Structure: Graph Diffusion Convolution (GDC) modestly improves performance by

emphasizing long-range dependencies, suggesting minimal but useful structural cues.

Dataset Size: Larger graph datasets (Products, ArXiv) show no significant performance gap between

structure-aware and structure-free settings.
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