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Background

➢ Graph contrastive learning

❖Graph neural network

❖ Contrastive learning

❖ Simple yet effective

➢ Challenge: heterogeneous nature of graph data

Ref 2. SimCLR, ICML’20Ref 1. GCN, ICLR’17

Fig 1. Social networks Fig 2. Polymers Fig 3. Power grids
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Background

➢ A representative,

GraphCL

❖ Perturbation invariance

❖ Hand-picking augmentation per datasets

❖ Human labor!
Augmentations:

Ref 3. GraphCL, NeurIPS’20

2/19



Background

➢ Data heterogeneity

➢ Ad-hoc choices of augmentations in GraphCL

➢ Rules derived from tedious tuning

➢ Question: Can we be more principled and automated?
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Contributions

➢ Given a new and unseen graph dataset, can GraphCL automatically select 

augmentations, avoiding ad-hoc choices or tedious tuning?

➢ Joint augmentation optimization (JOAO)

❖ A principled bi-level optimization framework

❖ Automatic, free of human labor of trial-and-error

❖ Adaptive, generalizing smoothly to handling diverse graph data

❖ Dynamic, allowing for augmentation types varying at different steps
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Method. JOAO

➢ GraphCL

❖ Enforcing perturbation invariance

➢ The unified framework,
joint augmentation optimization (JOAO)
as a bi-level optimization
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Method. Instantiation of JOAO

➢ A min-max optimization instantiation

➢ Principles

❖ Exploiting challenging augmentations: model-based adversarial training

❖ Regularization with prior

▪ Uniform distribution avoiding collapse

▪ Squared Euclidean distance

❖ Trade-off by 𝛾

Ref 4. MBRDL, arXiv’20

Ref 5. Wang et 

al., arXiv’19
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Method. AGD for JOAO

➢ Alternating gradient descent (AGD)

❖ Upper-level minimization

❖ Lower-lever maximization

❖ Upper-level minimization

▪ GraphCL optimization given sampling distribution

Ref 5. Wang et 

al., arXiv’19
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Method. AGD for JOAO

❖ Lower-level maximization

▪ Gradient is not intuitive

▪ Analytical rewrite

▪ Undesired marginal probability 𝑝𝑗′ entangled in negative term
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Method. AGD for JOAO

▪ A lower-bound approximation to decouple 𝑝𝑗′

▪ Approximated contrastive loss:
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Method. AGD for JOAO

▪ Rewrote lower-level optimization

▪ Projected gradient descent ❖ Empirical convergenceRef 6. Boyd et 

al., 2004
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Method. JOAO Sanity Check

➢ Are JOAO selected augmentation reasonable?

❖ Selections

align with

“best practices”
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Method. JOAOv2 Addressing Distortion

➢ JOAO selects automatic, adaptive and dynamic augmentations

➢ However, more diverse, aggressive and challenging

➢ Potentially distorting training distribution

➢ JOAOv2 = JOAO + augmentation-aware multi-projection heads

Ref 7. SLA+AG, ICML’20

Ref 8. DistAug, ICML’20
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Experiments & Discussions

➢ Settings

❖ Semi-supervised

❖ Unsupervised

❖ Transfer

➢ Datasets

❖ Across diverse fields

❖ On bioinformatics domains

➢ Competitors

❖ Heuristic designed pretexts

❖ GraphCL with rules

➢ Summary of JOAO performance
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Experiments & Discussions.

Across Diverse Datasets

➢ JOAO performs on par with

ad-hoc rules

➢ Augmentation-aware

projection heads

strengths JOAO

Semi-supervised learning

Unsupervised learning
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Experiments & Discussions.

Across Diverse Datasets

➢ JOAOv2 generally

outperforms heuristic

self-supervised pretext tasks

Semi-supervised learning

Unsupervised learning
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Experiments & Discussions.

On Bioinformatics Datasets

➢ JOAOv2 underperforms heuristic

self-supervised pretext tasks, without 

incorporating domain expertise

➢ JOAOv2 generalizes better than 

GraphCL on unseen / domain 

specific datasets

Transfer learning
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Experiments & Discussions.

On Large-Scale Datasets

➢ JOAOv2 achieves a better

generalizability and scalability,

outperforms on large-scale datasets

Semi-supervised learning

on large-scale datasets
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Conclusions

➢ Problem: Handling heterogenous graph data with less manual efforts

➢ Contributions:

❖ JOAO, a unified automatic framework

❖ An instantiation as min-max optimization, with AGD for solution

❖ JOAOv2, addressing distortion with multi-projection heads

❖ Thorough experiments verifying the rationale and performance advantage
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Further Discussions

➢ Limitation:

❖ Automating augmentation selection, while requiring human to construct & 

config augmentation pool: “full” automation is still desired

➢ Potential:

❖ In parallel to the principled formulation of bi-level optimization, a meta-

learning formulation can also be pursued
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Thank you for listening!

Paper: https://arxiv.org/abs/2106.07594

Code: https://github.com/Shen-Lab/GraphCL_Automated

https://arxiv.org/abs/2106.07594
https://github.com/Shen-Lab/GraphCL_Automated

