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> Motivations

» Selection of JOAO aligns with previous “best practices”.
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*» Unlike images, graph data are inherently heterogenous (e.g.
pandemics, product co-purchase relation, molecules).

* The SOTA GraphCL [1] handles the heterogenousity with ad-hoc

choices of augmentation for every datasets.

¢ The rules of thumb for selection are derived from tedious tuning.

** Question: Given a new and unseen graph dataset, can GraphCL
select augmentations in a principled and automated fashion?

» Method. Joint Augmentation Optimization

** We propose the unified joint augmentation optimization framework (JOAQO)
for automatic augmentation selection (specifically for the sampling
distribution P4, 4,)), @s a bi-level optimization (Eq. (2)).
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** Motivated from model-based adversarial training, we propose a min-max
Instantiation (Eqg. (3)), that in the lower-level opt|m|zat|or‘,1.
= It always tries to exploit the most challenging augmentation;
= We reqgularize it with prior distribution. <———-—""" ;

“* We solve Eg. (3) with alternating gradient descent (AGD), with the
empirical convergency demonstrated.

» Method. Augmentation-Aware Multi-Projection
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Figure 4: An overview of GraphCL with multiple augmentation-
aware projection heads where ¢, _,, 4,
' 1 2

* JOAO makes automatic and dynamic
selection, but also aggressive and - -
diverse, potentially leading to training — [NP{W]
distortion [2,3]. We introduce multiple -
projection heads with augmentation- Grle_ )
aware selection scheme to address
it, referred as JOAOV2.
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s How reasonable are

®

®

the JOAO-selected
augmentation pairs
per dataset?

We observe that

the selection of JOAO
IS generally consistent

with previous “best
practices”.
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Experiments

Figure 3: Top row: sampling distributions (%, defined as the percentage of this specific augmentation pair being selected during the
entire training process) for augmentation pairs selected by JOAO on four different datasets (NCI1, PROTEINS, COLLAB, and RDT-B ).
Bottom row: GraphCL performance gains (classification accuracy %, see (You et al., 2020a) for the detailed setting) when exhaustively
trying every possible augmentation pair. Note that the percentage numbers in the first and second rows have different meanings and are
not apple-to-apple comparable; however, the overall alignments between the two rows’ trends and high-value locations indicate that, if an
augmentation pair was manually verified to yield better GraphCL results, 1t 1s also more likely to be selected by JOAO. Warmer (colder)
colors indicate higher (lower) values, and white marks 0.

We numerically show that JOAO is comparable with SOTA competitors on datasets from diverse

sources, and generalizes better than GraphCL on domain specific / large-scale datasets.

Table 4: Semi-supervised learning on TUDataset. Shown 1n red are the best accuracy (%) and those within the standard deviation of the
best accuracy or the best average ranks. - indicates that label rate 1s too low for a given dataset size. L.R. and A.R. are short for label rate
and average rank, respectively. The compared results except those for ContextPred are as published under the same experiment setting.
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T T JOAO 61971072 - T T T 63711084 - T T T T T T T T T 60.3510.24 | 3.0 GraphCL 40.81£1.33  7.66L0.25
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