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Introduction

* Graph convolutional networks
(GCNs, ICLR’17):
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Self-supervision (SS) in images
(e.g. Selfie, preprint’19):
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* Semi-supervised learning is an important field of graph-based
applications with abundant unlabeled data available;

 SSis a promising technique in the few-shot scenario (of the computer
vision domain) via using unlabeled data;

 SSin GCNs is still under-explored with an exception (M3S, AAAI'19).
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We perform a systematic study on SS + GCNs:

— 1. How to incorporate SS in GCNs? Train with | | Train in the

SS tasks downstream task

* Pretraining & finetuning;

Generate pseudo
labels via SS treated
as true labels

® Self‘training (MSS, AAAI’19), Repeat several rounds

Train in the
downstream task

y

Train in the downstream task

* Multi-task learning. together with SS tasks
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Overview of contributions Z Engineering
We perform a systematic study on SS + GCNs:

— 2. How to design SS tasks to improve generalizability?

* We investigate three SS tasks: node feature clustering, graph
partitioning and graph completion;

* We illustrate that different SS tasks benefit generalizability in
different cases.
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We perform a systematic study on SS + GCNs:
— 3. Does SS boost robustness?
* We generalize SS into adversarial training;

* We show SS also improves GCN robustness without requiring
larger models nor additional data.
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Train with | Train in the
SS tasks downstream task

e Pretraining & finetuning:

— Little performance gains on a large dataset PubMed,;

— Conjecture: The performance behavior is due to “switching” the loss
function of training shallow GCNs from pretraining to finetuning;

Table 1: Comparing performances of GCN through pretraining
& finetuning (P&F) and multi-task learning (MTL) with graph
partitioning (see Section 3.3) on the PubMed dataset. Reported

- S h d | IOW G C NS are eaSI |y ‘ ove rwrltte n g numbers correspond to classification accuracy in percent.
after loss-function switching. R S T

Accuracy { 79.10 £ 0.21 | 79.19 + 0.21 | 80.00 £ 0.74
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* Self—training (MSS, AAAI, 19) Train in the Generate pseudo

labels via SS treated
downstream task
- as true labels

y

Repeat several rounds

— Performance gain encounters “saturation”
as the label rate grows higher;

— Conjecture: pseudo labels are assigned based on their proximity to
labeled nodes in embeddings;

Table 2: Experiments for GCN through M3S. Gray numbers are

— Less general (in pseudo labels) from (Sun et al., 2019).
compa red with multi-task |earning_ Label Rate | 0.03% | 0.1% | 0.3% (Conventional dataset spli)
GCN 51.1 67.5 79.10 £+ 0.21
M3S 59.2 70.6 79.28 + 0.30
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Train in the downstream task

* Multi-task learni ng: together with SS tasks

— Empirically outperforms other two schemes;

— We regard the SS task as a regularization term throughout the
network training;

Table 1: Comparing performances of GCN through pretraining
& finetuning (P&F) and multi-task learning (MTL) with graph
partitioning (see Section 3.3) on the PubMed dataset. Reported

- ACt as a d ata_d rlve n regu |a rl ZEI. numbers correspond to classification accuracy in percent.

Pipeline | GCN | P&F | MIL
Accuracy | 7910 £ 0.21 | 79.19 + 0.21 | 80.00 + 0.74
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Table 3: Overview of three self-supervised tasks.

Task [ Relied Feature | Primary Assumption [ Type
We I nvest I ga te th ree SS ta S kS " Clustering Nodes Feature Similarity Classification
" Partitioning Edges Connection Density Classification
Completion Nodes & Edges Context based Representation Regression
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Figure 1: The overall framework for self-supervision on GCN through multi-task learning. The target task and auxiliary self-supervised
tasks share the same feature extractor fy(-,-) with their individual linear transformation parameters ©, O;.

Department of Electrical and Computer Engineering




TEXAS A&M UNIVERSITY
Contribution 2. Whether the design of SS tasks matter? ”.:.I.?’I - Engineering

* We illustrate that different SS tasks benefit generalizability in different

Cases. Table 6: Experiments on SOTAs (GCN, GAT, GIN, GMNN, and
GraphMix) with multi-task self-supervision. Red numbers indicate
the best two performances for each SOTA.

. Datasets [ Cora | Citeseer |  PubMed
- Cl U (Ste rl ng) aSS U m eS th at featu re GCN 81.00 + 0.67 70.85 + 0.70 79.10 + 0.21
| GCN+Clu 81.57 £0.59 | 70.73 £ 0.84 ;;i.?‘) + 0.36
H H H H H H H H . GCN+Pe 31.83 = 0.65 7154 = 0.69 .00 = 0.74
similarity implies target-label similarity;  cvicom | sios o6 | 7166048 | 7014 +02s
GAT 77.66 + 1.08 68.90 + 1.07 78.05 + 0.46
| GAT+Clu 79.40 + 0.73 69.88 + 1.13 77.80 + 0.28 |
GAT+Par 80.11 £ 0.84 | 69.76 £ 0.81 80.11 + 0.34
GAT+Comp 80.47 £+ 1.22 70.62 4+ 1.26 77.10 + 0.67
. . GIN 7_7.27 + 0.52 68.83 £ 0.40 77.38 + 0.59
GIN+CI 78.43 + 0.80 68.86 £ 0.91 76.71 + 0.36
- Cha”enged In |arge datasets Wlth I (rlN:-l’a? 31.83 £ 0.58 711.5(;1().44 %0.28 * 1.3 I
. . GIN+Comp 76.62 + 1.17 68.71 + 1.01 78.70 + 0.69
GMNN 8328 £ 081 72.83 £ 072 81.34 £ 0.59
|OW featu re d I m e nSIO nS L__GMNN+Clu__ | 8340 + 065 [ 73.13£0.72 | 79.45+0.76 |
GMNN+Par 83.51 +£0.50 | 73.62 + 0.65 80.92 + 0.77
h P b IVI d GMNN+Comp 83.31 + 0.81 72.93 +0.79 81.33 + 0.59
(S u C aS u e ) - GraphMix 83.91 + 0.63 74.33 + 0.65 80.68 + 0.57
| GraphMix+Clu 83.87 £ 0.56 | 75.16 £ 0.52 79.99 +0.82 |
GraphMix+Par 84.04 £ 0.57 7493 £ 0.43 81.36 + 0.33
GraphMix+Comp 83.76 + 0.64 7443 £+ 0.72 80.82 + 0.54
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* We illustrate that different SS tasks benefit generalizability in different

Cases. Table 6: Experiments on SOTAs (GCN, GAT, GIN, GMNN, and
GraphMix) with multi-task self-supervision. Red numbers indicate
the best two performances for each SOTA.

.. . Datasets [ Cora | Citeseer |  PubMed
- Pa r(t|t|on) assumes that con neCtlonS GCN 81.00 £ 0.67 | 70.85 £0.70 | 79.10 £ 0.21
"~ GCN+Clu |7 81.57 £0.59 [ 70.73 £ 0.84 [ 78.79 £ 0.36 _
i H H P P i P . GCN-+Par 8183 + 0.65 | 71.34 T 0.60 | 80.00 0.74 |
In topology implies similarity in labels; ‘“—wmm— s e s
GAT 77.66 £ 1.08 | 68.90 & 1.07 | 78.05 + 0.46
© " GAT+Clu |7 7940 £ 073 | 69.88 £ .13 [ 77.80 £ 0.28 ~
[ GAT+Par 80.11 £ 0.84 | 69.76 £ 0.81 | 80.11 + 0.34 |
GAT+Comp 80.47 £ 1.22 | 70.62 £ 1.26 | 77.10 £ 0.6
. . GIN 7127 £0.52 | 6883 £040 | 77.38 £ 0.59
GIN+Clu 78.43 + 0.80 | 68.86 £ 0.91 | 76.71 + 0.36
- Safe for the three CltatIOﬂ networks [ GIN+Par 81.83 £ 0.8 | 71.00 = 0.44 | 80.28 * 1.34 |
GIN+Comp 16.62 = 1.1/ 68.71 = 1.01 78,70 = 0.69
GMNN 8328 £ 081 | 7283 £0.72 | 81.34 £ 0.59
GMNN+Cly 8349 + 065 2313 4+072 7945 4+ 076
83514050 | 7362 +065 | 8092 +077 |
GMNN+Comp | 83.31+0.81 | 7293 +0.79 | 81.33 +0.59
GraphMix 8301 £0.63 | 7433 £0.65 | 80.68 * 0.57
" GraphMix+Clu _ |~ 83.87 £ 0.56 [ 75.16 £ 0.52 [ 79.99 £ 0.82 _
[ GraphMix+Par__| 84.04 + 0.57 | 74.03 + 043 | 81.36 £ 033 ]
GraphMix+Comp | 83.76 + 0.64 | 7443 T 0.72 | 80.82 * 0.54
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* We illustrate that different SS tasks benefit generalizability in different

Cases. Table 6: Experiments on SOTAs (GCN, GAT, GIN, GMNN, and
GraphMix) with multi-task self-supervision. Red numbers indicate
the best two performances for each SOTA.

R Datasets [ Cora [ Citeseer [ PubMed
— Comp(letion) assumes feature T _GON__ [ BLOOE067 | 7085 £070 [ .00+ 021 _
GCN+Clu 81.57 £ 059 [ 70.73 £ 0.84 | 78791 0.36
. : . : GCN-+P: 81.83 4+ 0.65 | 71.344+0.69 | 80.00 +0.74
S|m||a nty or SmOOth Nness In Sma” [ GCN+Cn‘:;p B1.03 T 0.68 | 71.66 f 048 | 79.14 £ 0.28 |
GAT 7766 T 1.08 | 6800 L 1.07 | 78.05 L 046
1 . T 7 TGAT+Clu~ [ 7940+ 073 | 6988 £ 1.13 | 77.80 £ 0.28 ~
nel gh bO rh OOd S y GA’I'+P:; 80.11 + 0.84 f:l).'ff: +0.81 | 80.11 4+ 0.34
[ GAT+Comp 8047 + 1.22 | 70.62 + 1.26 | 77.10 £ 0.67 |
GIN 7727 + 052 | 68.83 +0.40 | 7738 +0.59
T 7 TGINAClu [ 77843£080 | 6886 +091 [ 76.71 £0.36
GIN+Par 81.83 +0.58 | 71.50 +0.44 | 80.28 +1.34
: S
Improve performance for datasets with oy [ Er T [T er [aaoe
. I GMNNPar 2351 4050 7362 4065 8092 + 077 I
” hb h d h GMNN+Comp | 8331+ 081 | 72934+079 | 81334059
sma nelg ornoods (SUC as GraphMix 8391 + 0.63 | 7433 +£0.65 | 80.68 +0.57
. " “GraphMix+Clu ~ | 83.87 £ 056 | 75.16 £0.52 | 79.99F0.82 ~
C |te see r) . GraphMix-+Par | 84.04 +0.57 | 74.93 +043 | 81.36 + 0.33
[ GraphMix+Comp | 83.76 + 0.64 | 74.43 +0.72 | 80.82 + 054 |
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* We illustrate that different SS tasks benefit generalizability in different

Cases. Table 6: Experiments on SOTAs (GCN, GAT, GIN, GMNN, and
GraphMix) with multi-task self-supervision. Red numbers indicate
the best two performances for each SOTA.

. Datasets Cora [ Citeseer [ PubMed
— Architectures also affect performa NCES; [ GON 8100 £ 0.67 | 7085 £0.70 | 79.10 £ 021
GCN+Clu 81.57 £0.59 [ 70.73 £ 0.84 | 7879+ 0.36 ~
GCN+Par 81834065 | 71344069 | 80.00+0.74
GCN+Comp 8103+ 0.68 | 71.66 + 048 | 79.14 +0.28
[ CAl 7766 £ 1.08 | 68.90 & 1.07 | 78.05 + 0.46
GAT+Clu 7940 +0.73 | 6988+ 1.13 | 77.80 +0.28 ~
A h H H h k H GAT+Par 80.11 + 0.84 | 69.76 +0.81 | 80.11 +0.34
— I'C IteCtU Fes W|t weaker p Flors GAT+Comp 8047 + 122 | 70624126 | 77.10 + 0.67
[ CIN 7727+ 052 | 6883 £040 | 7738 £0.50
h ave See n m O re I m p rove m e nt fro m SS GIN+Clu 78.43 £0.80 | 68.86 £091 | 76.71 +0.36
. GIN+Par 8183+ 058 | 71.50 +0.44 | 80.28 + 1.34
GIN+Comp 76624+ 1.17 | 6871+ 1.01 | 78.70 + 0.69
GMNN 8328 £ 0.81 | 7283 £0.72 | 8134 £ 059
" 7 GMNN+Clu ~ [ 8349 +065 | 73.13+0.72 | 79.45+0.76 ~
GMNN+Par 83.51 + 050 | 73.62+0.65 | 80.92+0.77
GMNN+Comp | 83314081 | 72934079 | 81.33 +0.59
GraphMix 3391 £ 0.63 | 74.33 £ 0.65 | 80.68 £ 0.57
" “GraphMix+Clu ~ | 83.87 £ 056 | 75.16 £0.52 | 79.99F0.82 ~
GraphMix+Par | 84.04 +0.57 | 7493 4043 | 81.36+0.33
GraphMix+Comp | 83.76 + 0.64 | 7443+ 072 | 80.82 4+ 0.54
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 We generalize SS into adversarial training:

— Adversarial training; 2 X A8, Z'— fo(X'. 4O
= Jo s 3 =Je ’ ’

6*, 0" = argglgl(ﬁsup(ﬁ, O) + azLaav (8, @)) ,  (6)

— SS + Adversarial training: 7 XA, 7 — h(X. AN
= Je ) 3 = Jo 3 )

Zss - fﬁ(Xss: Ass)
0", @%@ = arg o min (1 Lsup (6, 0)

+ a2£ss(93 ass) + CVSEadv(H: @)):
(7)
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We show that SS also improves GCN robustness without requiring larger
mOdeIS or addltlonal data- Table 7: Adversarial defense performances on Cora using adver-

sarial training (abbr. AdvT) without or with graph self-supervision.
Attacks include those on links, features (abbr. Feats), and both.
Red numbers indicate the best two performances in each attack
scenario (node classification accuracy; unit: %).

— Clu is more effective against | |
Attacks | None | Links [ Feats | Links & Feats
feature attacks; AT 03T £ 073 | SIS 25T [ SIS T35 | R 305

AdvT+Clu 80.26 £0.99 | 55.54 +3.19 76.24 £ 0.99 41.84 £ 3.48

AdvT+Par 80.42 4+ 0.76 | 56.36 £+ 2.57 75.88 £ 0.72 41.57 £ 3.47
AdvT+Comp | 79.64 £ 0.99 59.05 £+ 3.29 76.04 &= 0.68 47.14 4 3.01

- Par IS more effeCUVe aga I nSt Table 8: Adversarial defense performances on Citeseer using
. adversarial training without or with graph self-supervision.
links attacks;

Attacks ‘ None | Links | Feats ‘ Links & Feats
GCN 71.05 £ 0.56 13.68 £ 1.09 22.08 4+ 0.73 3.08 £ 0.17
AdvT 6998 + 1.03 39.32 £ 2.39 63.12 4+ 0.62 26.20 + 2.09

AdvT+Clu 70.13 £ 0.81 40.32 £ 1.73 63.67 + 0.45 27.024+1.29
AdvT+Par 69.96 + 0.77 | 41.05 £ 1.91 64.06 + 0.24 28.70 &+ 1.60
AdvT+Comp | 6998 £ 0.82 | 40.42 £ 2.09 63.50 £ 0.31 27.16 + 1.69
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We show that SS also improves GCN robustness without requiring larger
mOdeIS or addltlonal data- Table 7: Adversarial defense performances on Cora using adver-

sarial training (abbr. AdvT) without or with graph self-supervision.
Attacks include those on links, features (abbr. Feats), and both.
Red numbers indicate the best two performances in each attack
scenario (node classification accuracy; unit: %).

— Strl kl ngly’ Com p Sign Iflca ntly bOOStS Attacks | None | Links [ Feats | Links & Feats
robustness against link attacks and AT | SO 0T | SASWE 25T | 5 £ T35 | B L 305

AdvT+Clu 80.26 £0.99 | 55.54 +3.19 76.24 £ 0.99 41.84 £ 3.48

i AdvT+P; 80424+ 0.76 | 56.36 £2.57 | 7588 £0.72 41.57 £ 3.47
| I n k & featu re attaC ks O n CO ra " Adv"‘[/‘JrEoi:p 79.64 + 0.99 SO.(;g +3.29 | 76.04 4+ 0.68 47.14 4 3.01

Table 8: Adversarial defense performances on Citeseer using
adversarial training without or with graph self-supervision.

Attacks ‘ None | Links | Feats ‘ Links & Feats
GCN 71.05 £ 0.56 13.68 £ 1.09 22.08 4+ 0.73 3.08 £ 0.17
AdvT 6998 + 1.03 39.32 £ 2.39 63.12 4+ 0.62 26.20 + 2.09

AdvT+Clu 70.13 £ 0.81 40.32 £ 1.73 63.67 + 0.45 27.024+1.29
AdvT+Par 69.96 + 0.77 | 41.05 £ 1.91 64.06 + 0.24 28.70 &+ 1.60
AdvT+Comp | 6998 £ 0.82 | 40.42 £ 2.09 63.50 £ 0.31 27.16 + 1.69
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 We demonstrate the effectiveness of incorporating self-supervised
learning in GCNs through multi-task learning;

* We illustrate that appropriately designed multi-task self-supervision
tasks benefit GCN generalizability in different cases;

*  We show that multi-task self-supervision also improves robustness
against attacks, without requiring larger models or additional data.
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