

• Generative AI on 3D graphs $\mathcal{M} := (\mathcal{G}, \mathcal{C})$:

Spatial Genomics

Symmetry structure in data: The identity of a 3D graph is invariant to permutation and SE(3) transformations.

Central Question

- Denote the forward and reverse mappings for 3D graphs
- A (diffusion) generative model (DGM) is trained in the z-space to capture the distribution.
- When hs are identical mappings, DGM is built on the 3D graph space [1].
- We hypothesize the choice of the diffusion space impacts generation quality.
- Question: In what (latent) space should we learn the 3D graphs distribution?

> Answer: Justification of "Good" Latent Space

We show the good latent space should (i) exhibit low reconstruction error, (ii) preserve symmetry structure, and (iii) be of low dimensionality.

3D Graph Diffusion Performance \leq Latent Space Reconstruction Quality

+ Symmetry Preservation \times Data Dimensionality. Proposition 2. (3D graph diffusion could benefit from the lower-dimensional latent space if ap**propriately constructed**. See proof in Append. A.2) Assume there existing mappings $\vec{h} : \mathbb{R}^{D'} \to \mathbb{R}^{D'}$ $\mathbb{R}^{D''}, \overleftarrow{h} : \mathbb{R}^{D''} \to \mathbb{R}^{D'}$ that $D'' \leq D'$ and \overleftarrow{h} is injective. Assume DGM now is trained in $\mathbb{R}^{D'}$ to model $\overrightarrow{p}_{\text{data}}(\mathbf{z}) = \Pr\{\mathbf{x}_{\text{M}} : \overrightarrow{h'}(\mathbf{x}_{\text{M}}) = \mathbf{z}, \mathbf{x}_{\text{M}} \sim p_{\text{data}}\}$ with $p_{\theta}(\mathbf{z})$, and it is evaluated in $\mathbb{R}^{D'}$ on $\overleftarrow{p}_{\theta}([\mathbf{x}_{\mathrm{M}}]_{\Pi,\Omega}) = \Pr\{\mathbf{z} : h(\mathbf{z}) \in [\mathbf{x}_{\mathrm{M}}]_{\Pi,\Omega}, \mathbf{z} \sim p_{\theta}\}$ (as in Propos. 1), and the assumptions in Propos. 1 retain for the score estimator f_{θ} and mapping distribution. Then, it holds: $\neg \mathsf{TV}(\overleftarrow{p}_{\theta}, \widetilde{p}_{\text{data}}) \lesssim \mathsf{TV}(\overleftarrow{p}_{\text{data}}, \widetilde{p}_{\text{data}}) +$

 $\bar{\alpha}(p_{\theta}, \overrightarrow{h}, \overleftarrow{h}, \Pi, \Omega) \left(\sqrt{\mathrm{KL}(\overrightarrow{p}_{\mathrm{data}} \| \mathcal{N}_{D''})} e^{-T} + (L\sqrt{D''} + L\mathsf{m} + \varepsilon_{\mathrm{score}}) \sqrt{T} \right), \quad (3)$

where $\langle \tilde{p}'_{\text{data}}([\mathbf{x}_{\text{M}}]_{\Pi,\Omega}) = \Pr\{\mathbf{x}'_{\text{M}} : h(h(\mathbf{x}'_{\text{M}})) \in [\mathbf{x}_{\text{M}}]_{\Pi,\Omega}, \mathbf{x}'_{\text{M}} \sim p_{\text{data}}\}, \text{ and } \bar{\alpha}(\cdot) \text{ depends on } \langle \hat{p}'_{\text{data}} \rangle \in [\mathbf{x}_{\text{M}}]_{\Pi,\Omega}, \mathbf{x}'_{\text{M}} \sim p_{\text{data}}\},$ both the latent diffusion architecture that $\bar{\alpha}(p_{\theta}, \vec{h}, \overleftarrow{h}, \Pi, \Omega) = \alpha(\overleftarrow{p}_{\theta}, \Pi, \Omega)$ if $\overleftarrow{p}_{data} = p_{data}$. \Box

Latent 3D Graph Diffusion

Yuning You¹, Ruida Zhou², Jiwoong Park¹, Haotian Xu¹, Chao Tian¹, Zhangyang Wang³, Yang Shen¹

¹Texas A&M University, ²University of California, Los Angeles, ³University of Texas at Austin

Experiments on 3D Molecule Generation

Unconditional Generation

Table 2: Unconditional generation evaluation on validness of 3D molecules. Valid: proportion of (POF) chemically valid molecules; Valid&Uni: POF chemically valid and unique molecules; AtomSta: POF atoms with correct valency. MolSta: POF molecules without unstable atoms. Numbers (std) in red are the best result

>

recover from latent to 3D

graph (see Figure (b));

	y, Moista. PO	r molecules v	villiout ulistat	ne atoms. Nu		Table 6: Condition	nal generat	ion on p	rotein bind	ing targets	s evaluation.	Assessment metrics	QED/SA & Vir		
Methods	QM9				Drugs		Mean	scores are calculated with RDKit (Landrum, 2013) & AutoDock (Huey et al., 2012), respectively.							
	Valid	Valid&Uni	AtomSta	MolSta	Valid	AtomSta		Methods	QED↑	SA↑	HiAff↑	Vina↓	VDock↓	Vina (Top-10%)↓	Diversity [↑]
ENF	40.2	39.4	85.0	4.9	_	_	42.37			0.70			(22		0.66
G-Schnet	85.5	80.3	95.7	68.1	_	_	82.40	LIGAN	0.39	0.59	21.1%	-	-6.33	-	0.66
GDM	_	_	97.0	63.2	90.8	75.0	81.50	GraphBP	0.43	0.49	14.2%	-	-4.80	-7.16	0.79
GDM-Aug	90.4	89.5	97.6	71.6	91.8	77.7	86.43	AR	0.51	0.63	37.9%	-5.75	-6.75	-	0.70
EDM	91.9(0.5)	90.7(0.6)	98.7(0.1)	82.0(0.4)	92.6	81.3	89.53	Pocket2Mol	0.56	0.74	48.4%	-5.14	-7.15	-8.71	0.69
EDM-Bridge	92.0	90.7	98.8(0.1)	84.6(0.3)	92.8	82.4(0.8)	90.21	TargetDiff	0.48	0.58	58.1%	-5.47	-7.80	-9.66	0.72
GCDM	94.8(0.2)	93.3(0.0)	98.7(0.0)	85.7(0.4)	_	89.0 (0.8)	92.30	DiffSBDD	0.46	0.55	-	-7.33	_	-9.92	0.75
MiDi	97.9	97.0	97.9	84.0	78.0	82.2	89.50	DecompDiff	0.45	0.61	64.4%	-5.67	-8.39	-	0.68
GraphLDM	83.6	82.7	97.2	70.5	97.2	76.2	84.56			0.71	40.000	5.00	6.05	10.04	0.00
GraphLDM-Aug	90.5	89.5	97.9	78.7	98.0	79.6	89.03	Ours	0.60	0.71	48.08%	-5.23	-6.85	-12.34	0.80
GeoLDM	93.8(0.4)	92.7(0.5)	98.9 (0.1)	89.4 (0.5)	99.3	84.4	93.08	A TRANSFER	Sec. 2.		augurt an	953/25	1.83		# 1308-24
Ours	100.00(0.00)	95.27(0.25)	97.57(0.02)	86.87(0.23)	100.00(0.00)	80.51(0.08)	93.37			2.326	C. The Co	State .	and the second		See 1

[1] "Equivariant Diffusion for Molecule Generation in 3D. [2] Graph Contrastive Learning with Augmentations.

ICLR

Conditional Generation