Yuning You¹, Ruida Zhou², Jiwoong Park¹, Haotian Xu¹, **Chao Tian1 , Zhangyang Wang3 , Yang Shen1**

¹Texas A&M University, ²University of California, Los Angeles, ³University of Texas at Austin

Latent 3D Graph Diffusion

[1] "Equivariant Diffusion for Molecule Generation in 3D. [2] Graph Contrastive Learning with Augmentations.

❖ Symmetry structure in data: The identity of a 3D graph is invariant to permutation and SE(3) transformations.

Spatial Genomics

◆ We show the good latent space should (i) exhibit low reconstruction error, (ii) preserve symmetry structure, and (iii) be of low dimensionality.

 $\frac{13D}{2}$ Graph Diffusion Performance \leq Latent Space Reconstruction Quality

 \overline{A} Symmetry Preservation \times Data Dimensionality. Proposition 2. (3D graph diffusion could benefit from the lower-dimensional latent space if ap**propriately constructed.** See proof in Append. $\overrightarrow{A.2}$) Assume there existing mappings \overrightarrow{h} : $\mathbb{R}^{D'} \rightarrow$ $\mathbb{R}^{D''}, \overleftarrow{h} : \mathbb{R}^{D''} \to \mathbb{R}^{D'}$ that $D'' \leq' D'$ and \overleftarrow{h} is injective. Assume DGM now is trained in $\mathbb{R}^{D'}$ to model $\overrightarrow{p}_{data}(z) = Pr\{x_M : \overrightarrow{h}(x_M) = z, x_M \sim p_{data}\}\$ with $p_{\theta}(z)$, and it is evaluated in $\mathbb{R}^{D'}$ on $\overleftarrow{p}_{\theta}([\mathbf{x}_M]_{\Pi,\Omega}) = \Pr\{\mathbf{z} : \overleftarrow{h}(\mathbf{z})\}\in [\mathbf{x}_M]_{\Pi,\Omega}, \mathbf{z} \sim p_\theta\}$ (as in Propos. 1), and the assumptions in Propos. 1 retain for the score estimator f_{θ} and mapping distribution. Then, it holds: \blacktriangleright TV $(\overleftarrow{\widetilde{p}}_{\theta},\widetilde{p}_{\text{data}})$ \leq TV $(\overleftarrow{\widetilde{p}}_{\text{data}},\overleftarrow{\widetilde{p}}_{\text{data}})$ +

 $\overrightarrow{\alpha}(p_{\theta}, \overrightarrow{h}, \overleftarrow{h}, \Pi, \Omega) \left(\sqrt{\text{KL}(\overrightarrow{p}_{\text{data}} || \mathcal{N}_{D''}) e^{-T} + (L\sqrt{D''} + Lm + \varepsilon_{\text{score}}) \sqrt{T}} \right) \right|_{P}$

where $\overleftrightarrow{p}_{data}([\mathbf{x}_M]_{\Pi,\Omega}) = \Pr\{\mathbf{x}'_M : \overleftarrow{h}(\overrightarrow{h}(\mathbf{x}'_M)) \in [\mathbf{x}_M]_{\Pi,\Omega}, \mathbf{x}'_M \sim p_{data}\}\$, and $\overline{\alpha}(\cdot)$ depends on both the latent diffusion architecture that $\bar{\alpha}(p_{\theta}, \vec{h}, \overleftarrow{h}, \Pi, \Omega) = \alpha(\overleftarrow{p}_{\theta}, \Pi, \Omega)$ if $\overleftrightarrow{p}_{data} = p_{data}$. \Box

Ø **Central Question**

- Denote the forward and reverse mappings for 3D graphs $\mathcal{L} = \overline{h}_{\phi_1}(\mathcal{M})$,
- ◆ A (diffusion) generative model (DGM) is trained in the z-space to capture the distribution.
- \dots **When** *hs* are identical mappings, DGM is built on the 3D graph space [1].
- We hypothesize the choice of the diffusion space impacts generation quality.
- *** Question**: In what (latent) space should we learn the 3D graphs distribution?

Ø **Answer: Justification of "Good" Latent Space**

Unconditional Generation

ICLR