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❖ Graph self-supervised learning: Potential “negative transfer” [1]

❖ Transfer algorithms for specific scenarios: Restricted to designated 

scenarios (e.g. size transfer) [2]

❖ Applying domain adaptation methods to graphs: Not specific for graph data, 

with room to improve [3]

❖ Question: How to design algorithms to boost transfer performance across 

different graph domains, with the grounded theoretical foundation?

➢ Solution: A theoretical guaranteed, generic, and

graph-specific algorithm

❖ Theoretically charactering graph transfer risk bound (by combining Eqs. (4-6))

▪ Tools: Domain adaptation and spectral graph theory

▪ Analysis: We identify important GNN properties related to the bound:

o Spectral smoothness (SS) and maximum frequency response (MFR)

o More importantly, SS relates to node transfer and MFR relates to link transfer (see Sec. 4.2)

❖ We accordingly propose to regularize SS and MFR to confine the bound

Example 1:

Example 2:

➢ Gap: Competitive Transfer Performance 

with Theoretical Guarantee

➢ Experiments

❖ PPI link prediction

❖ Please refer to the paper for more numerical results 

(e.g. citation network node classification)
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