**H** 

## **Graph Domain Adaptation via Theory-Grounded Spectral Regularization**



## **Gap: Competitive Transfer Performance** with Theoretical Guarantee

- Graph self-supervised learning: Potential "negative transfer" [1]
- Transfer algorithms for specific scenarios: Restricted to designated scenarios (e.g. size transfer) [2]
- Applying domain adaptation methods to graphs: Not specific for graph data, with room to improve [3]
- Question: How to design algorithms to boost transfer performance across different graph domains, with the grounded theoretical foundation?

Yuning You<sup>1</sup>, Tianlong Chen<sup>2</sup>, Zhangyang Wang<sup>2</sup>, Yang Shen<sup>1</sup> <sup>1</sup>Texas A&M University, <sup>2</sup>University of Texas at Austin

## Solution: A theoretical guaranteed, generic, and graph-specific algorithm

Analysis: We identify important GNN properties related to the bound: • Spectral smoothness (SS) and maximum frequency response (MFR) • More importantly, SS relates to **node transfer** and MFR relates to **link transfer** (see Sec. 4.2)

We accordingly propose to regularize SS and MFR to confine the bound

| Methods                                              | Co-expression: Link transfer $\Rightarrow$ MFRReg |                                                                   |                                          |                                                                   |                           |                     | 14 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M | ~                                               |                                               |                                                                             | $\neg \gamma$                                        | ~               |
|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|---------------------------|---------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|-----------------|
|                                                      | Mouse                                             | Zebrafish                                                         | Fruit fly                                | Yeast                                                             | Mean↑                     | Rank↓               |                                          | ~())                                            |                                               | ectral -                                                                    |                                                      |                 |
| Mashup                                               | 48.98±2.34<br>(5.49±0.32)                         | 51.63±1.81<br>(5.37±0.33)                                         | 50.28±2.20<br>(5.51±0.17)                | 46.31±0.63<br>(4.96±0.05)                                         | 43.90<br>(5.33)           | 9.0                 |                                          | $x(\lambda)$                                    |                                               | gnals                                                                       | $\uparrow$ $\checkmark$                              |                 |
| D-SCRIPT                                             | $54.48 \pm 3.27$<br>(6.01 $\pm 0.63$ )            | $61.18 \pm 1.05$<br>(8.12 \pm 1.77)                               | $66.63 \pm 1.41$<br>(9.78 $\pm 0.25$ )   | $58.88 \pm 0.80$<br>(7.53 $\pm 0.11$ )                            | 60.29<br>(7.86)           | 7.5                 |                                          | -                                               |                                               |                                                                             |                                                      |                 |
| GraphCL                                              | 73.09±1.56<br>(14.98±2.18)                        | $74.19 \pm 0.50 \\ (18.76 \pm 2.11)$                              | 66.80±2.55<br>(12.12±2.00)               | $\begin{array}{c} 62.41 \pm 1.12 \\ (11.32 \pm 2.86) \end{array}$ | 69.12<br>(14.29)          | 5.2                 |                                          |                                                 |                                               | - )                                                                         |                                                      |                 |
| Transformer                                          | 69.55±0.41<br>(18.06±0.13)                        | 69.63±0.84<br>(27.44±1.21)                                        | 57.38±1.77<br>(10.13±1.02)               | 63.01±1.45<br>(11.25±1.58)                                        | 64.89<br>(16.72)          | 5.8                 |                                          | $\lambda_1 \ \lambda_2 \ \lambda_1 \ \lambda_2$ |                                               |                                                                             |                                                      |                 |
| Transformer<br>+GIN                                  | 76.35±0.38<br>(21.91±1.60)                        | 79.29±2.78<br>(28.07±4.71)                                        | 66.54±1.11<br>(13.48±0.71)               | <b>63.91</b> ±1.55 (11.15±1.11)                                   | 71.52 (18.65)             | 4.0                 |                                          | SSRe                                            | g: Regulariz                                  | ze                                                                          | MFRReg: 1                                            | Regula          |
| Transformer<br>+GIN+DA-C                             | <b>78.56</b> ±1.55 (22.76±4.42)                   | <b>79.46</b> ±2.97 (27.10±3.10)                                   | 64.78±1.23<br>(11.61±2.08)               | $60.65 \pm 3.85$<br>(10.72 $\pm 2.44$ )                           | 70.86<br>(18.04)          | 4.8                 | - Cart                                   | $ \tilde{z}(\lambda$                            | $\lambda_2) - 	ilde{z}(\lambda_1)$            | m                                                                           | $\sum_{i=1}^{\infty} \frac{\tilde{z}(\lambda_2)}{i}$ | $\tilde{z}($    |
| Transformer<br>+GIN+DA-W                             | $77.38 \pm 2.54$<br>(23.03 $\pm 2.98$ )           | $\begin{array}{c} 79.22 \pm 0.89 \\ (26.90 \pm 2.03) \end{array}$ | <b>67.78</b> ±0.40 ( <b>13.78</b> ±0.94) | $62.43 \pm 2.62$<br>(11.59 $\pm 1.98$ )                           | <b>71.70</b> (18.82)      | 3.6                 |                                          | $ \lambda_2 	ilde{x}(\lambda_2) $               | $\lambda_2) - \lambda_1 	ilde{x} (\lambda_2)$ | $\lambda_1)$                                                                | $\tilde{x}(\lambda_2)$                               | $\tilde{x}($    |
| ransformer+GIN<br>+DA-W+SSReg                        | 77.57±1.14<br>( <b>23.13</b> ±0.64)               | 79.44±1.21<br>( <b>28.97</b> ±2.22)                               | 65.27±1.49<br>(11.88±0.89)               | 62.28±1.71<br>( <b>13.24</b> ±2.49)                               | 71.14<br>( <b>19.30</b> ) | 3.6                 | Methods                                  | Mouse                                           | Physica<br>Zebrafish                          | I: Node transfer $\Rightarrow$ SSReg<br>Fruit fly Yeast   Mean <sup>↑</sup> |                                                      |                 |
| ransformer+GIN<br>DA-W+MFRReg                        | <b>77.63</b> ±1.00<br>( <b>23.83</b> ±2.75)       | 80.81±1.27<br>(29.04±0.62)                                        | 68.56±0.88<br>(13.94±0.47)               | <b>63.74</b> ±0.27<br>( <b>16.80</b> ±2.34)                       | 72.68<br>(20.90)          | 1.2                 | Mashup                                   | 51.54±3.82<br>(5.58±0.35)                       | 37.82±3.43<br>(3.98±0.12)                     | 46.88±6.87<br>(7.19±3.93)                                                   | $57.99 \pm 2.28$<br>(6.78 \pm 0.92)                  | 48.55<br>(5.88) |
| 1000 C                                               |                                                   |                                                                   |                                          | 1.8. C. C. C. C. K.                                               | 19.5                      | 17 ( A 1 ( A        | D-SCRIPT                                 | $58.22\pm6.97$<br>(7.03±1.09)                   | $49.58 \pm 1.12$<br>(5.02±0.76)               | $62.97 \pm 0.78$<br>(9.61 \pm 0.21)                                         | $62.43 \pm 0.59$<br>(8.56 \pm 0.15)                  | 58.30 (7.55)    |
|                                                      |                                                   |                                                                   | 1                                        |                                                                   |                           |                     | GraphCL                                  | $76.88 \pm 0.42$<br>(31.16 \pm 1.43)            | $79.11 \pm 1.14 \\ (41.80 \pm 3.20)$          | $81.02 \pm 0.98$<br>(38.63 $\pm 2.30$ )                                     | $71.03 \pm 0.30$<br>(14.58 $\pm 1.16$ )              | 77.01 (31.54)   |
| PI link prediction                                   |                                                   |                                                                   |                                          |                                                                   |                           | Transformer         | 77.65±0.84<br>( <b>35.05</b> ±0.92)      | 75.61±1.86<br>( <b>45.13</b> ±3.15)             | 76.90±1.64<br>(32.72±2.34)                    | 67.86±0.61<br>(12.46±1.08)                                                  | 74.50 (31.34)                                        |                 |
| Please refer to the paper for more numerical results |                                                   |                                                                   |                                          |                                                                   |                           | Transformer<br>+GIN | $79.77 \pm 0.92$<br>(31.23+1.94)         | $80.85 \pm 2.41$<br>(34.29+12.42)               | $82.38 \pm 1.13$<br>(42.40+2.04)              | $71.54 \pm 0.36$<br>(15.73 \pm 0.79)                                        | 78.63                                                |                 |
| is a second to the paper for more numerical results  |                                                   |                                                                   |                                          |                                                                   |                           |                     | Transformer                              | 80.14±1.86                                      | 83.58±1.15                                    | 81.49±1.27                                                                  | $71.30 \pm 0.61$                                     | 79.12           |
| o citatio                                            | n networ                                          | k node c                                                          | assificat                                | ion)                                                              |                           |                     | +GIN+DA-C                                | $(34.29\pm4.12)$                                | $(44.01\pm4.00)$                              | $(38.94\pm2.36)$                                                            | $(16.80 \pm 0.65)$                                   | (33.51)         |

[1] You et al., "Graph Contrastive Learning with Augmentations", NeurIPS'20. [2] Yehudai et al, "From local structures to size References generalization in graph neural networks", ICML'21. [3] Wu et al, "Unsupervised domain adaptive graph convolutional networks", WWW'20

Contact: {yuning.you, yshen}@tamu.edu, {tianlong.chen,atlaswang}@utexas.edu



Theoretically charactering graph transfer risk bound (by combining Eqs. (4-6)) Tools: Domain adaptation and spectral graph theory

$$\begin{aligned} \epsilon_{\mathrm{T}}(h,\hat{h}) &\leq \hat{\epsilon}_{\mathrm{S}}(h,\hat{h}) + \sqrt{\frac{4d}{N_{\mathrm{S}}}\log(\frac{eN_{\mathrm{S}}}{d}) + \frac{1}{N_{\mathrm{S}}}\log(\frac{1}{\delta})} + 2C_{f}C_{g}W_{1}\left(\mathbb{P}_{\mathrm{S}}(G),\mathbb{P}_{\mathrm{T}}(G)\right) + \omega, \quad (4) \\ & \|f(G_{1}) - f(G_{2})\|_{2} \leq C_{\lambda}(1 + \tau\sqrt{N_{G}})\|A_{1} - P^{*}A_{2}P^{*\mathsf{T}}\|_{\mathsf{F}} \\ & + \mathcal{O}(\|A_{1} - P^{*}A_{2}P^{*\mathsf{T}}\|_{\mathsf{F}}^{2}) + \max\left\{|\mathcal{S}(\Lambda_{2})|\right\}\|X_{1} - P^{*}X_{2}\|_{\mathsf{F}}, \quad (5) \\ & \mathcal{C}_{f} = \max\left\{C_{\lambda}K_{1} + \varepsilon K_{2}, |\mathcal{S}(\lambda^{*})|\right\}, \quad (6) \end{aligned}$$