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Appendix
A. Proof of Theorem 5

Let GNN A¢c,, = R o ’CCon ..o ‘CCon be conven-
tionally trained by the optimization formulation (10) in the
main text, with the conditions in Theorem 2 holding, i.e.

£(Cl)0n, [ € L are injective, therefore Acoy, is as powerful as
WL test, we have:
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Now we prove that it can also be layer-wise trained by the
optimization formulation (11) in the main text to achieve

Prob{R o L) o ..o £4) (G1) # Ro LY,

£0),(G2)|Gr % Ga} = Cwi.
(a) When training the 1st-layer mapping, we are going to
solve the optimization problem as:
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We can show that L(Ll(zy is injective as follows. Suppose
that the optimal solution E(ng is not injective. Since we
can conventionally train Ag,,,, we have a feasible injective
solution /35;13 ,- For any non-isomorphic graph pairs G and
Gg, if layer-wise training has the correct mapping as R o
ELay (Gh) # ROELM, (G3), but conventional training maps
wrongly as R o E(C()m(Gl) =TRo E(Cl()m(GQ), due to R is
injective on multiset, for conventional training we have:
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Therefore there existing a bijective mapping ¢
{1,...,N} = {1,..., N} such that:

L) (@, {m%l j € Na, (8)})
= £8) (@0 A2\ j € Nay(k))),i = (k).
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Since L., is injective, we always have:
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0 ) .
{6, 17 € Nou(i) = {22, : § € Naw(R)},i = 6(h).
Thus for layer-wise training we have:
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which results in:
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We have R o ELay (G1)=TRo £Lay (G2), which comes to
a contradiction. Hence, we reach that if R o L(Lla) ,(G1) #
R o ELW(GQ) correctly, then we have R o L’gon(Gl) #
ROEggn (G2) correctly. However, not vice versa, it is easily
to prove that if R o L(C}zn( Gi1) #Ro ,Cgon(Gg) correctly,
Lay(C1) = Roo L],

we may have R o £ Lay

Therefore we have:

(G2) wrongly.
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which is contradict to (1). Thus, E(ngy is injective.

(b) Assume we have finished training [ — 1 layer-wise
mapping E(Ll;yl o Egly which are injective. When train-
ing the [st-layer mapping, we are going to solve the opti-
mization problem as:
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We can show that E(lely is injective. Suppose optimal the

solution Egiy

is not injective. Since we can conventionally
train Ac,y,, we have a feasible injective solution L(C{)(m For
any non-isomorphic graphs GG1, G, similar to the induction
in (a), we have:

Prob{Ro LY), 0 L) 0.0 L], (G1) # Ro

Egiy o Eg;yl) 0..0 ﬁ(ngy(G2)|G1 % Go}
< Prob{Ro Ly, o L] Vo . 0 L]) (Gi) #R

oL oLy oo Ll) (Gy)Gy 2 Ga),

which contradicts (2). Thus, Lgly is injective.

With (a) and (b), we have the result: through layer-
wise trained by the optimization formulation (11) in the
main text, we have injective layered mappings £ 1elL.
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With Theorem 2, we come to the conclusion that Azq, =

ROE(LLa)yo...OE(ngy is as powerful as WL test, i.e. Prob{Ro
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B. Proof of Theorem 6

Let’s denote a layer-wise trained GNN as Ap,, = R o
(L) (1)
LY o...0L
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NiY) # LV e e M) it Y £

Lay
(I=1)
Zj

whose layer mapping E(Lliy :RPxMP —

. We show that for any two non-isomorphic graphs

G1,Go, if I — 1 layer network R o Eg;yl) 0..0 E(ngy can
successfully distinguishes them as:

Rol Vo ogV (G1) #Roﬁgfl)o. oLy (Ga).
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Then [ layer network R o E(lfiy o Eg;j) 0...0 ﬁ(Ll(Zy also
can distinguish them as:
Roﬁgzzyo‘c(lf;yl)O"'O‘C(ngy(Gl) (4)
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Suppose (4) does not hold, since R is injective on mul-
tiset, the same as the proof in Theorem 5, there exists a
bijective mapping ¢ : {1,..., N} — {1,..., N} such that:
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Since the layer mapping can distinguish

sulting that if £Y)

£ @0 {27V e N(k)}). we have 2™V =
w,(f*l). Therefore we have:
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Due to the injectivity of R, here comes the result:
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which is contradict to (3). Thus, (4) holds, and we have the
conclusion: for any two non-isomorphic graphs G1, Ga, if
l—1layer network can successfully distinguishes them, then
[ layer network also can distinguish them, which results in:
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C. Dataset Statistic
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Dataset statistic is shown in Table 1.

Table 1: Datasets Statistics.

Dataset Nodes Edges Features Classes
Cora 2780 13264 1433 7
PubMed 19717 108365 500 3
PPI 56944 818716 50 121
Reddit 232965 11606919 602 41
Amazon-670K 643474 1000746 100 32
Amazon-3M 2460406 48396681 100 38




