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Appendix

A. Proof of Theorem 5
Let GNN ACon = R ◦ L(L)

Con ◦ ... ◦ L
(1)
Con be conven-

tionally trained by the optimization formulation (10) in the
main text, with the conditions in Theorem 2 holding, i.e.
L(l)
Con, l ∈ L are injective, therefore ACon is as powerful as

WL test, we have:

Prob{R ◦ L(L)
Con ◦ ... ◦ L

(1)
Con(G1)

6= R ◦ L(L)
Con ◦ ... ◦ L

(1)
Con(G2)|G1 � G2} = CWL.

Now we prove that it can also be layer-wise trained by the
optimization formulation (11) in the main text to achieve
Prob{R ◦ L(L)

Lay ◦ ... ◦ L
(1)
Lay(G1) 6= R ◦ L(L)

Lay ◦ ... ◦
L(1)
Lay(G2)|G1 � G2} = CWL.

(a) When training the 1st-layer mapping, we are going to
solve the optimization problem as:

L(1)
Lay = maxL(1) Prob{R ◦ L(1)(G1)

6= R ◦ L(1)(G2)|G1 � G2}.
(1)

We can show that L(1)
Lay is injective as follows. Suppose

that the optimal solution L(1)
Lay is not injective. Since we

can conventionally train ACon, we have a feasible injective
solution L(1)

Lay . For any non-isomorphic graph pairs G1 and
G2, if layer-wise training has the correct mapping as R ◦
L(1)
Lay(G1) 6= R◦L(1)

Lay(G2), but conventional training maps

wrongly as R ◦ L(1)
Con(G1) = R ◦ L(1)

Con(G2), due to R is
injective on multiset, for conventional training we have:

{x(1)
i,G1,Con : x

(1)
i,G1,Con =

L(1)
Con(x

(0)
i,G1

, {x(0)
j,G1

: j ∈ NG1(i)}), i ∈ N}

= {x(1)
i,G2,Con : x

(1)
i,G2,Con =

L(1)
Con(x

(0)
i,G2

, {x(0)
j,G2

: j ∈ NG2
(i)}), i ∈ N}.

Therefore there existing a bijective mapping φ :
{1, ..., N} → {1, ..., N} such that:

L(1)
Con(x

(0)
i,G1

, {x(0)
j,G1

: j ∈ NG1(i)})

= L(1)
Con(x

(0)
k,G2

, {x(0)
j,G2

: j ∈ NG2
(k)}), i = φ(k).

Since L(1)
Con is injective, we always have:

x
(0)
i,G1

= x
(0)
k,G2

,

{x(0)
j,G1

: j ∈ NG1(i) = {x
(0)
j,G2

: j ∈ NG2(k)}, i = φ(k).

Thus for layer-wise training we have:

x
(1)
i,G1,Lay = x

(1)
k,G2,Lay,

x
(1)
i,G1,Lay = L(1)

Lay(x
(0)
i,G1

, {x(0)
j,G1

: j ∈ NG1(i)}),

x
(1)
k,G2,Lay = L(1)

Lay(x
(0)
k,G2

, {x(0)
j,G2

: j ∈ NG2
(k)}), i = φ(k),

which results in:

{x(1)
i,G1,Lay : x

(1)
i,G1,Lay =

L(1)
Lay(x

(0)
i,G1

, {x(0)
j,G1

: j ∈ NG1
(i)}), i ∈ N}

= {x(1)
i,G2,Lay : x

(1)
i,G2,Lay =

L(1)
Lay(x

(0)
i,G2

, {x(0)
j,G2

: j ∈ NG2
(i)}), i ∈ N}.

We haveR ◦ L(1)
Lay(G1) = R ◦ L(1)

Lay(G2), which comes to

a contradiction. Hence, we reach that if R ◦ L(1)
Lay(G1) 6=

R ◦ L(1)
Lay(G2) correctly, then we have R ◦ L(1)

Con(G1) 6=
R◦L(1)

Con(G2) correctly. However, not vice versa, it is easily
to prove that if R ◦ L(1)

Con(G1) 6= R ◦ L(1)
Con(G2) correctly,

we may have R ◦ L(1)
Lay(G1) = R ◦ L(1)

Lay(G2) wrongly.
Therefore we have:

Prob{R ◦ L(1)
Lay(G1) 6= R ◦ L(1)

Lay(G2)|G1 � G2}

< Prob{R ◦ L(1)
Con(G1) 6= R ◦ L(1)

Con(G2)|G1 � G2},

1



which is contradict to (1). Thus, L(1)
Lay is injective.

(b) Assume we have finished training l − 1 layer-wise
mapping L(l−1)

Lay , ...,L(l)
Lay which are injective. When train-

ing the lst-layer mapping, we are going to solve the opti-
mization problem as:

L(l)
Lay = maxL(l) Prob{R ◦ L(l) ◦ L(l−1)

Lay ◦ ... ◦ L
(1)
Lay(G1)

6= R ◦ L(l) ◦ L(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2)|G1 � G2}.

(2)

We can show that L(l)
Lay is injective. Suppose optimal the

solution L(l)
Lay is not injective. Since we can conventionally

trainACon, we have a feasible injective solution L(l)
Con. For

any non-isomorphic graphsG1, G2, similar to the induction
in (a), we have:

Prob{R ◦ L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G1) 6= R◦

L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2)|G1 � G2}

< Prob{R ◦ L(l)
Con ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G1) 6= R

◦ L(l)
Con ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2)|G1 � G2},

which contradicts (2). Thus, L(l)
Lay is injective.

With (a) and (b), we have the result: through layer-
wise trained by the optimization formulation (11) in the
main text, we have injective layered mappings L(l)

Lay, l ∈ L.
With Theorem 2, we come to the conclusion that ALay =

R◦L(L)
Lay◦...◦L

(1)
Lay is as powerful as WL test, i.e. Prob{R◦

L(L)
Lay ◦ ... ◦ L

(1)
Lay(G1) 6= R ◦ L(L)

Lay ◦ ... ◦ L
(1)
Lay(G2)|G1 �

G2} = CWL, which finishes the proof.

B. Proof of Theorem 6

Let’s denote a layer-wise trained GNN as ALay = R ◦
L(L)
Lay◦...◦L

(1)
Lay , whose layer mappingL(l)

Lay : RD×MD →
RD can distinguish x

(l−1)
i , i.e. L(l)

Lay(x
(l−1)
i , {x(l−1)

j : j ∈
Ni}) 6= L(l)

Lay(x
(l−1)
k , {x(l−1)

j : j ∈ Nk}) if x
(l−1)
i 6=

x
(l−1)
j . We show that for any two non-isomorphic graphs

G1, G2, if l − 1 layer network R ◦ L(l−1)
Lay ◦ ... ◦ L

(1)
Lay can

successfully distinguishes them as:

R◦L(l−1)
Lay ◦ ... ◦L

(1)
Lay(G1) 6= R◦L(l−1)

Lay ◦ ... ◦L
(1)
Lay(G2).

(3)
Then l layer networkR◦L(l)

Lay ◦ L
(l−1)
Lay ◦ ... ◦ L

(1)
Lay also

can distinguish them as:

R ◦ L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G1)

6= R ◦ L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2).

(4)

Suppose (4) does not hold, since R is injective on mul-
tiset, the same as the proof in Theorem 5, there exists a
bijective mapping φ : {1, ..., N} → {1, ..., N} such that:

L(l)
Lay(x

(l−1)
i,G1

, {x(l−1)
j,G1

: j ∈ NG1
(i)})

= L(l)
Lay(x

(l−1)
k,G2

, {x(l−1)
j,G2

: j ∈ NG2
(k)}), i = φ(k).

Since the layer mapping can distinguish x
(l−1)
i , re-

sulting that if L(l)
Lay(x

(l−1)
i , {x(l−1)

j : j ∈ N (i)}) =

L(l)
Lay(x

(l−1)
k , {x(l−1)

j : j ∈ N (k)}), we have x
(l−1)
i =

x
(l−1)
k . Therefore we have:

x
(l−1)
i,G1

= x
(l−1)
k,G2

, i = φ(k).

Due to the injectivity ofR, here comes the result:

R◦L(l−1)
Lay ◦ ... ◦L

(1)
Lay(G1) = R◦L(l−1)

Lay ◦ ... ◦L
(1)
Lay(G2).

which is contradict to (3). Thus, (4) holds, and we have the
conclusion: for any two non-isomorphic graphs G1, G2, if
l−1 layer network can successfully distinguishes them, then
l layer network also can distinguish them, which results in:

Prob{R ◦ L(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G1)

6= R ◦ L(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2)|G1 � G2}

≤ Prob{R ◦ L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G1)

6= R ◦ L(l)
Lay ◦ L

(l−1)
Lay ◦ ... ◦ L

(1)
Lay(G2)|G1 � G2}.

(5)

C. Dataset Statistic
Dataset statistic is shown in Table 1.

Table 1: Datasets Statistics.

Dataset Nodes Edges Features Classes
Cora 2780 13264 1433 7

PubMed 19717 108365 500 3
PPI 56944 818716 50 121

Reddit 232965 11606919 602 41
Amazon-670K 643474 1000746 100 32
Amazon-3M 2460406 48396681 100 38


