Supplementary Materials: L²-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks

Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen Texas A&M University

{yuning.you,wiwjp619,atlaswang,yshen}@tamu.edu

Appendix

A. Proof of Theorem 5

Let GNN $\mathcal{A}_{Con} = \mathcal{R} \circ \mathcal{L}_{Con}^{(L)} \circ \dots \circ \mathcal{L}_{Con}^{(1)}$ be conventionally trained by the optimization formulation (10) in the main text, with the conditions in Theorem 2 holding, i.e. $\mathcal{L}_{Con}^{(l)}, l \in L$ are injective, therefore \mathcal{A}_{Con} is as powerful as WL test, we have:

$$Prob\{\mathcal{R} \circ \mathcal{L}_{Con}^{(L)} \circ \dots \circ \mathcal{L}_{Con}^{(1)}(G_1) \\ \neq \mathcal{R} \circ \mathcal{L}_{Con}^{(L)} \circ \dots \circ \mathcal{L}_{Con}^{(1)}(G_2) | G_1 \ncong G_2\} = C_{WL}$$

Now we prove that it can also be layer-wise trained by the optimization formulation (11) in the main text to achieve $Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ ... \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ ... \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2\} = C_{WL}.$

(a) When training the 1st-layer mapping, we are going to solve the optimization problem as:

$$\mathcal{L}_{Lay}^{(1)} = max_{\mathcal{L}^{(1)}} \operatorname{Prob}\{\mathcal{R} \circ \mathcal{L}^{(1)}(G_1) \\ \neq \mathcal{R} \circ \mathcal{L}^{(1)}(G_2) | G_1 \not\cong G_2\}.$$
(1)

We can show that $\mathcal{L}_{Lay}^{(1)}$ is injective as follows. Suppose that the optimal solution $\mathcal{L}_{Lay}^{(1)}$ is not injective. Since we can conventionally train \mathcal{A}_{Con} , we have a feasible injective solution $\mathcal{L}_{Lay}^{(1)}$. For any non-isomorphic graph pairs G_1 and G_2 , if layer-wise training has the correct mapping as $\mathcal{R} \circ$ $\mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_2)$, but conventional training maps wrongly as $\mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_1) = \mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_2)$, due to \mathcal{R} is injective on multiset, for conventional training we have:

$$\{ \boldsymbol{x}_{i,G_{1},Con}^{(1)} : \boldsymbol{x}_{i,G_{1},Con}^{(1)} = \\ \mathcal{L}_{Con}^{(1)}(\boldsymbol{x}_{i,G_{1}}^{(0)}, \{ \boldsymbol{x}_{j,G_{1}}^{(0)} : j \in \mathcal{N}_{G_{1}}(i) \}), i \in N \} \\ = \{ \boldsymbol{x}_{i,G_{2},Con}^{(1)} : \boldsymbol{x}_{i,G_{2},Con}^{(1)} = \\ \mathcal{L}_{Con}^{(1)}(\boldsymbol{x}_{i,G_{2}}^{(0)}, \{ \boldsymbol{x}_{j,G_{2}}^{(0)} : j \in \mathcal{N}_{G_{2}}(i) \}), i \in N \}.$$

Therefore there existing a bijective mapping $\phi: \{1,...,N\} \rightarrow \{1,...,N\}$ such that:

$$\mathcal{L}_{Con}^{(1)}(\boldsymbol{x}_{i,G_1}^{(0)}, \{\boldsymbol{x}_{j,G_1}^{(0)} : j \in \mathcal{N}_{G_1}(i)\}) \\ = \mathcal{L}_{Con}^{(1)}(\boldsymbol{x}_{k,G_2}^{(0)}, \{\boldsymbol{x}_{j,G_2}^{(0)} : j \in \mathcal{N}_{G_2}(k)\}), i = \phi(k).$$

Since $\mathcal{L}_{Can}^{(1)}$ is injective, we always have:

$$\begin{aligned} \boldsymbol{x}_{i,G_1}^{(0)} &= \boldsymbol{x}_{k,G_2}^{(0)}, \\ \{ \boldsymbol{x}_{j,G_1}^{(0)} : j \in \mathcal{N}_{G_1}(i) = \{ \boldsymbol{x}_{j,G_2}^{(0)} : j \in \mathcal{N}_{G_2}(k) \}, i = \phi(k). \end{aligned}$$

Thus for layer-wise training we have:

$$\begin{aligned} \boldsymbol{x}_{i,G_{1},Lay}^{(1)} &= \boldsymbol{x}_{k,G_{2},Lay}^{(1)}, \\ \boldsymbol{x}_{i,G_{1},Lay}^{(1)} &= \mathcal{L}_{Lay}^{(1)}(\boldsymbol{x}_{i,G_{1}}^{(0)}, \{\boldsymbol{x}_{j,G_{1}}^{(0)} : j \in \mathcal{N}_{G_{1}}(i)\}), \\ \boldsymbol{x}_{k,G_{2},Lay}^{(1)} &= \mathcal{L}_{Lay}^{(1)}(\boldsymbol{x}_{k,G_{2}}^{(0)}, \{\boldsymbol{x}_{j,G_{2}}^{(0)} : j \in \mathcal{N}_{G_{2}}(k)\}), i = \phi(k), \end{aligned}$$

which results in:

$$\begin{aligned} & \{ \boldsymbol{x}_{i,G_{1},Lay}^{(1)} : \boldsymbol{x}_{i,G_{1},Lay}^{(1)} = \\ & \mathcal{L}_{Lay}^{(1)}(\boldsymbol{x}_{i,G_{1}}^{(0)}, \{ \boldsymbol{x}_{j,G_{1}}^{(0)} : j \in \mathcal{N}_{G_{1}}(i) \}), i \in N \} \\ & = \{ \boldsymbol{x}_{i,G_{2},Lay}^{(1)} : \boldsymbol{x}_{i,G_{2},Lay}^{(1)} = \\ & \mathcal{L}_{Lay}^{(1)}(\boldsymbol{x}_{i,G_{2}}^{(0)}, \{ \boldsymbol{x}_{j,G_{2}}^{(0)} : j \in \mathcal{N}_{G_{2}}(i) \}), i \in N \}. \end{aligned}$$

We have $\mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_1) = \mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_2)$, which comes to a contradiction. Hence, we reach that if $\mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_2)$ correctly, then we have $\mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_2)$ correctly. However, not vice versa, it is easily to prove that if $\mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_2)$ correctly, we may have $\mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_1) = \mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_2)$ wrongly. Therefore we have:

$$Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2\}$$

$$< Prob\{\mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Con}^{(1)}(G_2) | G_1 \ncong G_2\},\$$

which is contradict to (1). Thus, $\mathcal{L}_{Lay}^{(1)}$ is injective. (b) Assume we have finished training l-1 layer-wise mapping $\mathcal{L}_{Lay}^{(l-1)}, ..., \mathcal{L}_{Lay}^{(l)}$ which are injective. When training the *l*st-layer mapping, we are going to solve the optimization problem as:

$$\mathcal{L}_{Lay}^{(l)} = max_{\mathcal{L}^{(l)}} \operatorname{Prob}\{\mathcal{R} \circ \mathcal{L}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \\ \neq \mathcal{R} \circ \mathcal{L}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2 \}.$$
(2)

We can show that $\mathcal{L}_{Lay}^{(l)}$ is injective. Suppose optimal the solution $\mathcal{L}_{Lay}^{(l)}$ is not injective. Since we can conventionally train \mathcal{A}_{Con} , we have a feasible injective solution $\mathcal{L}_{Con}^{(l)}$. For any non-isomorphic graphs G_1, G_2 , similar to the induction in (a), we have:

$$Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ$$
$$\mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2 \}$$
$$< Prob\{\mathcal{R} \circ \mathcal{L}_{Con}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R}$$
$$\circ \mathcal{L}_{Con}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2 \},$$

which contradicts (2). Thus, $\mathcal{L}_{Lau}^{(l)}$ is injective.

With (a) and (b), we have the result: through layerwise trained by the optimization formulation (11) in the main text, we have injective layered mappings $\mathcal{L}_{Lay}^{(l)}$, $l \in L$. With Theorem 2, we come to the conclusion that $\mathcal{A}_{Lay} = \mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}$ is as powerful as WL test, i.e. $Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong$ $G_2\} = C_{WL}$, which finishes the proof.

B. Proof of Theorem 6

Let's denote a layer-wise trained GNN as $\mathcal{A}_{Lay} = \mathcal{R} \circ \mathcal{L}_{Lay}^{(L)} \circ \ldots \circ \mathcal{L}_{Lay}^{(1)}$, whose layer mapping $\mathcal{L}_{Lay}^{(l)} : \mathbb{R}^D \times \mathbb{M}^D \to \mathbb{R}^D$ can distinguish $\boldsymbol{x}_i^{(l-1)}$, i.e. $\mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_i^{(l-1)}, \{\boldsymbol{x}_j^{(l-1)} : j \in \mathcal{N}_k\})$ if $\boldsymbol{x}_i^{(l-1)} \neq \mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_k^{(l-1)}, \{\boldsymbol{x}_j^{(l-1)} : j \in \mathcal{N}_k\})$ if $\boldsymbol{x}_i^{(l-1)} \neq \mathcal{L}_{Lay}^{(l-1)}$. $\boldsymbol{x}_i^{(l-1)}$. We show that for any two non-isomorphic graphs G_1, G_2 , if l-1 layer network $\mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}$ can successfully distinguishes them as:

$$\mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2).$$
(3)

Then l layer network $\mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}$ also can distinguish them as:

$$\mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1)
\neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2).$$
(4)

Suppose (4) does not hold, since \mathcal{R} is injective on multiset, the same as the proof in Theorem 5, there exists a bijective mapping $\phi : \{1, ..., N\} \rightarrow \{1, ..., N\}$ such that:

$$\mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_{i,G_1}^{(l-1)}, \{\boldsymbol{x}_{j,G_1}^{(l-1)} : j \in \mathcal{N}_{G_1}(i)\}) \\ = \mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_{k,G_2}^{(l-1)}, \{\boldsymbol{x}_{j,G_2}^{(l-1)} : j \in \mathcal{N}_{G_2}(k)\}), i = \phi(k).$$

Since the layer mapping can distinguish $\boldsymbol{x}_{i}^{(l-1)}$, resulting that if $\mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_{i}^{(l-1)}, \{\boldsymbol{x}_{j}^{(l-1)} : j \in \mathcal{N}(i)\}) = \mathcal{L}_{Lay}^{(l)}(\boldsymbol{x}_{k}^{(l-1)}, \{\boldsymbol{x}_{j}^{(l-1)} : j \in \mathcal{N}(k)\})$, we have $\boldsymbol{x}_{i}^{(l-1)} = \mathcal{L}_{Lay}^{(l-1)}(\boldsymbol{x}_{k}^{(l-1)}, \{\boldsymbol{x}_{j}^{(l-1)} : j \in \mathcal{N}(k)\})$, we have $\boldsymbol{x}_{i}^{(l-1)} = \mathcal{L}_{Lay}^{(l-1)}(\boldsymbol{x}_{k}^{(l-1)}, \{\boldsymbol{x}_{j}^{(l-1)} : j \in \mathcal{N}(k)\})$. $\boldsymbol{x}_{k}^{(l-1)}$. Therefore we have:

$$\boldsymbol{x}_{i,G_1}^{(l-1)} = \boldsymbol{x}_{k,G_2}^{(l-1)}, i = \phi(k).$$

Due to the injectivity of \mathcal{R} , here comes the result:

$$\mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) = \mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2).$$

which is contradict to (3). Thus, (4) holds, and we have the conclusion: for any two non-isomorphic graphs G_1, G_2 , if l-1 layer network can successfully distinguishes them, then *l* layer network also can distinguish them, which results in:

$$Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \\ \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2 \}$$

$$\leq Prob\{\mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_1) \\ \neq \mathcal{R} \circ \mathcal{L}_{Lay}^{(l)} \circ \mathcal{L}_{Lay}^{(l-1)} \circ \dots \circ \mathcal{L}_{Lay}^{(1)}(G_2) | G_1 \ncong G_2 \}.$$
(5)

C. Dataset Statistic

Dataset statistic is shown in Table 1.

Table 1: Datasets Statistics.

Dataset	Nodes	Edges	Features	Classes
Cora	2780	13264	1433	7
PubMed	19717	108365	500	3
PPI	56944	818716	50	121
Reddit	232965	11606919	602	41
Amazon-670K	643474	1000746	100	32
Amazon-3M	2460406	48396681	100	38