Supplementary Materials: \mathbf{L}^{2}-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks

Yuning You*, Tianlong Chen, Zhangyang Wang, Yang Shen
Texas A\&M University
\{yuning.you,wiwjp619, atlaswang,yshen\}@tamu.edu

Appendix

A. Proof of Theorem 5

Let GNN $\mathcal{A}_{C o n}=\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(L)} \circ \ldots \circ \mathcal{L}_{C o n}^{(1)}$ be conventionally trained by the optimization formulation (10) in the main text, with the conditions in Theorem 2 holding, i.e. $\mathcal{L}_{\text {Con }}^{(l)}, l \in L$ are injective, therefore $\mathcal{A}_{C o n}$ is as powerful as WL test, we have:

$$
\begin{aligned}
& \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{C o n}^{(L)} \circ \ldots \circ \mathcal{L}_{C o n}^{(1)}\left(G_{1}\right)\right. \\
& \left.\neq \mathcal{R} \circ \mathcal{L}_{C o n}^{(L)} \circ \ldots \circ \mathcal{L}_{C o n}^{(1)}\left(G_{2}\right) \mid G_{1} \not \not G_{2}\right\}=C_{W L}
\end{aligned}
$$

Now we prove that it can also be layer-wise trained by the optimization formulation (11) in the main text to achieve $\operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ\right.$ $\left.\mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \nexists G_{2}\right\}=C_{W L}$.
(a) When training the 1 st-layer mapping, we are going to solve the optimization problem as:

$$
\begin{align*}
& \mathcal{L}_{\text {Lay }}^{(1)}=\max _{\mathcal{L}^{(1)}} \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}^{(1)}\left(G_{1}\right)\right. \tag{1}\\
& \left.\neq \mathcal{R} \circ \mathcal{L}^{(1)}\left(G_{2}\right) \mid G_{1} \neq G_{2}\right\} .
\end{align*}
$$

We can show that $\mathcal{L}_{\text {Lay }}^{(1)}$ is injective as follows. Suppose that the optimal solution $\mathcal{L}_{\text {Lay }}^{(1)}$ is not injective. Since we can conventionally train $\mathcal{A}_{\text {Con }}$, we have a feasible injective solution $\mathcal{L}_{\text {Lay }}^{(1)}$. For any non-isomorphic graph pairs G_{1} and G_{2}, if layer-wise training has the correct mapping as $\mathcal{R} \circ$ $\mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)$, but conventional training maps wrongly as $\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{1}\right)=\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{2}\right)$, due to \mathcal{R} is injective on multiset, for conventional training we have:

$$
\begin{aligned}
& \left\{\boldsymbol{x}_{i, G_{1}, C o n}^{(1)}: \boldsymbol{x}_{i, G_{1}, C o n}^{(1)}=\right. \\
& \left.\mathcal{L}_{C o n}^{(1)}\left(\boldsymbol{x}_{i, G_{1}}^{(0)},\left\{\boldsymbol{x}_{j, G_{1}}^{(0)}: j \in \mathcal{N}_{G_{1}}(i)\right\}\right), i \in N\right\} \\
= & \left\{\boldsymbol{x}_{i, G_{2}, C o n}^{(1)}: \boldsymbol{x}_{i, G_{2}, C o n}^{(1)}=\right. \\
& \left.\mathcal{L}_{C o n}^{(1)}\left(\boldsymbol{x}_{i, G_{2}}^{(0)},\left\{\boldsymbol{x}_{j, G_{2}}^{(0)}: j \in \mathcal{N}_{G_{2}}(i)\right\}\right), i \in N\right\} .
\end{aligned}
$$

Therefore there existing a bijective mapping ϕ : $\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ such that:

$$
\begin{aligned}
& \mathcal{L}_{C o n}^{(1)}\left(\boldsymbol{x}_{i, G_{1}}^{(0)},\left\{\boldsymbol{x}_{j, G_{1}}^{(0)}: j \in \mathcal{N}_{G_{1}}(i)\right\}\right) \\
= & \mathcal{L}_{C o n}^{(1)}\left(\boldsymbol{x}_{k, G_{2}}^{(0)},\left\{\boldsymbol{x}_{j, G_{2}}^{(0)}: j \in \mathcal{N}_{G_{2}}(k)\right\}\right), i=\phi(k) .
\end{aligned}
$$

Since $\mathcal{L}_{\text {Con }}^{(1)}$ is injective, we always have:

$$
\begin{aligned}
& \boldsymbol{x}_{i, G_{1}}^{(0)}=\boldsymbol{x}_{k, G_{2}}^{(0)}, \\
& \left\{\boldsymbol{x}_{j, G_{1}}^{(0)}: j \in \mathcal{N}_{G_{1}}(i)=\left\{\boldsymbol{x}_{j, G_{2}}^{(0)}: j \in \mathcal{N}_{G_{2}}(k)\right\}, i=\phi(k) .\right.
\end{aligned}
$$

Thus for layer-wise training we have:
$\boldsymbol{x}_{i, G_{1}, \text { Lay }}^{(1)}=\boldsymbol{x}_{k, G_{2}, \text { Lay }}^{(1)}$,
$\boldsymbol{x}_{i, G_{1}, \text { Lay }}^{(1)}=\mathcal{L}_{\text {Lay }}^{(1)}\left(\boldsymbol{x}_{i, G_{1}}^{(0)},\left\{\boldsymbol{x}_{j, G_{1}}^{(0)}: j \in \mathcal{N}_{G_{1}}(i)\right\}\right)$,
$\boldsymbol{x}_{k, G_{2}, \text { Lay }}^{(1)}=\mathcal{L}_{L a y}^{(1)}\left(\boldsymbol{x}_{k, G_{2}}^{(0)},\left\{\boldsymbol{x}_{j, G_{2}}^{(0)}: j \in \mathcal{N}_{G_{2}}(k)\right\}\right), i=\phi(k)$,
which results in:

$$
\begin{aligned}
& \left\{\boldsymbol{x}_{i, G_{1}, \text { Lay }}^{(1)}: \boldsymbol{x}_{i, G_{1}, L a y}^{(1)}=\right. \\
& \left.\mathcal{L}_{\text {Lay }}^{(1)}\left(\boldsymbol{x}_{i, G_{1}}^{(0)},\left\{\boldsymbol{x}_{j, G_{1}}^{(0)}: j \in \mathcal{N}_{G_{1}}(i)\right\}\right), i \in N\right\} \\
= & \left\{\boldsymbol{x}_{i, G_{2}, \text { Lay }}^{(1)}: \boldsymbol{x}_{i, G_{2}, \text { Lay }}^{(1)}=\right. \\
& \left.\mathcal{L}_{\text {Lay }}^{(1)}\left(\boldsymbol{x}_{i, G_{2}}^{(0)},\left\{\boldsymbol{x}_{j, G_{2}}^{(0)}: j \in \mathcal{N}_{G_{2}}(i)\right\}\right), i \in N\right\} .
\end{aligned}
$$

We have $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)=\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)$, which comes to a contradiction. Hence, we reach that if $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq$ $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)$ correctly, then we have $\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{1}\right) \neq$ $\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{2}\right)$ correctly. However, not vice versa, it is easily to prove that if $\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{2}\right)$ correctly, we may have $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)=\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)$ wrongly. Therefore we have:

$$
\begin{aligned}
& \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \not \not G_{2}\right\} \\
& <\operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(1)}\left(G_{2}\right) \mid G_{1} \not \neq G_{2}\right\},
\end{aligned}
$$

which is contradict to (1). Thus, $\mathcal{L}_{\text {Lay }}^{(1)}$ is injective.
(b) Assume we have finished training $l-1$ layer-wise mapping $\mathcal{L}_{\text {Lay }}^{(l-1)}, \ldots, \mathcal{L}_{\text {Lay }}^{(l)}$ which are injective. When training the l st-layer mapping, we are going to solve the optimization problem as:

$$
\begin{align*}
& \mathcal{L}_{\text {Lay }}^{(l)}=\max _{\mathcal{L}^{(l)}} \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)\right. \\
& \left.\neq \mathcal{R} \circ \mathcal{L}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \nexists G_{2}\right\} . \tag{2}
\end{align*}
$$

We can show that $\mathcal{L}_{\text {Lay }}^{(l)}$ is injective. Suppose optimal the solution $\mathcal{L}_{\text {Lay }}^{(l)}$ is not injective. Since we can conventionally train $\mathcal{A}_{\text {Con }}$, we have a feasible injective solution $\mathcal{L}_{\text {Con }}^{(l)}$. For any non-isomorphic graphs G_{1}, G_{2}, similar to the induction in (a), we have:

$$
\begin{aligned}
& \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ\right. \\
& \left.\mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \not \not G_{2}\right\} \\
& <\operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Con }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R}\right. \\
& \left.\circ \mathcal{L}_{\text {Con }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \neq G_{2}\right\},
\end{aligned}
$$

which contradicts (2). Thus, $\mathcal{L}_{\text {Lay }}^{(l)}$ is injective.
With (a) and (b), we have the result: through layerwise trained by the optimization formulation (11) in the main text, we have injective layered mappings $\mathcal{L}_{\text {Lay }}^{(l)}, l \in L$. With Theorem 2, we come to the conclusion that $\mathcal{A}_{\text {Lay }}=$ $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}$ is as powerful as WL test, i.e. $\operatorname{Prob}\{\mathcal{R} \circ$ $\mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \nexists$ $\left.G_{2}\right\}=C_{W L}$, which finishes the proof.

B. Proof of Theorem 6

Let's denote a layer-wise trained GNN as $\mathcal{A}_{\text {Lay }}=\mathcal{R} \circ$ $\mathcal{L}_{\text {Lay }}^{(L)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}$, whose layer mapping $\mathcal{L}_{\text {Lay }}^{(l)}: \mathbb{R}^{D} \times \mathbb{M}^{D} \rightarrow$ \mathbb{R}^{D} can distinguish $\boldsymbol{x}_{i}^{(l-1)}$, i.e. $\mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{i}^{(l-1)},\left\{\boldsymbol{x}_{j}^{(l-1)}: j \in\right.\right.$ $\left.\left.\mathcal{N}_{i}\right\}\right) \neq \mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{k}^{(l-1)},\left\{\boldsymbol{x}_{j}^{(l-1)}: j \in \mathcal{N}_{k}\right\}\right)$ if $\boldsymbol{x}_{i}^{(l-1)} \neq$ $\boldsymbol{x}_{j}^{(l-1)}$. We show that for any two non-isomorphic graphs G_{1}, G_{2}, if $l-1$ layer network $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}$ can successfully distinguishes them as:
$\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)$.
Then l layer network $\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}$ also can distinguish them as:

$$
\begin{align*}
& \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right) \tag{4}\\
& \neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)
\end{align*}
$$

Suppose (4) does not hold, since \mathcal{R} is injective on multiset, the same as the proof in Theorem 5, there exists a bijective mapping $\phi:\{1, \ldots, N\} \rightarrow\{1, \ldots, N\}$ such that:

$$
\begin{aligned}
& \mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{i, G_{1}}^{(l-1)},\left\{\boldsymbol{x}_{j, G_{1}}^{(l-1)}: j \in \mathcal{N}_{G_{1}}(i)\right\}\right) \\
& =\mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{k, G_{2}}^{(l-1)},\left\{\boldsymbol{x}_{j, G_{2}}^{(l-1)}: j \in \mathcal{N}_{G_{2}}(k)\right\}\right), i=\phi(k) .
\end{aligned}
$$

Since the layer mapping can distinguish $\boldsymbol{x}_{i}^{(l-1)}$, resulting that if $\mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{i}^{(l-1)},\left\{\boldsymbol{x}_{j}^{(l-1)}: j \in \mathcal{N}(i)\right\}\right)=$ $\mathcal{L}_{\text {Lay }}^{(l)}\left(\boldsymbol{x}_{k}^{(l-1)},\left\{\boldsymbol{x}_{j}^{(l-1)}: j \in \mathcal{N}(k)\right\}\right)$, we have $\boldsymbol{x}_{i}^{(l-1)}=$ $\boldsymbol{x}_{k}^{(l-1)}$. Therefore we have:

$$
\boldsymbol{x}_{i, G_{1}}^{(l-1)}=\boldsymbol{x}_{k, G_{2}}^{(l-1)}, i=\phi(k) .
$$

Due to the injectivity of \mathcal{R}, here comes the result:

$$
\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)=\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right)
$$

which is contradict to (3). Thus, (4) holds, and we have the conclusion: for any two non-isomorphic graphs G_{1}, G_{2}, if $l-1$ layer network can successfully distinguishes them, then l layer network also can distinguish them, which results in:

$$
\begin{align*}
& \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)\right. \\
& \left.\neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \not \not G_{2}\right\} \\
& \leq \operatorname{Prob}\left\{\mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{1}\right)\right. \tag{5}\\
& \left.\neq \mathcal{R} \circ \mathcal{L}_{\text {Lay }}^{(l)} \circ \mathcal{L}_{\text {Lay }}^{(l-1)} \circ \ldots \circ \mathcal{L}_{\text {Lay }}^{(1)}\left(G_{2}\right) \mid G_{1} \not \not G_{2}\right\}
\end{align*}
$$

C. Dataset Statistic

Dataset statistic is shown in Table 1.

Table 1: Datasets Statistics.

Dataset	Nodes	Edges	Features	Classes
Cora	2780	13264	1433	7
PubMed	19717	108365	500	3
PPI	56944	818716	50	121
Reddit	232965	11606919	602	41
Amazon-670K	643474	1000746	100	32
Amazon-3M	2460406	48396681	100	38

