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A Dataset Statistics
Histograms of protein and compound lengths of the evaluation dataset

are shown in Figure S1, and histograms of protein lengths of the pre-
training datasets are shown in Figure S2.
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Figure S1. Histograms of protein and compound lengths in the compound-
protein affinities and contacts prediction dataset.
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Figure S2. Histograms of protein lengths in the pre-training datasets.

B Comparison between GAT and GCN for
protein-graph embedding
Experiments on comparing GAT and GCN on single-modality 2D

graph model and two cross-modality models are presented in Tables S1
and S2.

C Comparison between HRNN and Transformer
for protein-sequence embeding
Experiments on comparing HRNN and Transformer on single-

modality 1D sequence model and two cross-modality models are presented
in Table S3.

D Case Studies
Five case studies on compound-protein pairs including AL1-CA2, IT2-

CA2, CPB-PYGM, T68-PYGM and LHL-LCK are shown in Table S4 and
visualizations in Figures S3-S7. For detailed case description please refer
to (Karimi et al., 2020).
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Table S1. Comparison between GAT and GCN in compound-protein affinities prediction (measured by RMSE and Pearson’s correlation coefficient).

Methods
GAT GCN GAT GCN

S.-Both U.S.-Comp. S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both U.S.-Prot. U.S.-Both

Single Modality
(2D Graphs)

RMSE 1.49 1.37 1.59 1.38 RMSE 1.75 1.93 1.66 1.75
Pearson’s r 0.68 0.70 0.61 0.68 Pearson’s r 0.43 0.34 0.41 0.41

Cross Modality
(Concatenation)

RMSE 1.47 1.37 1.51 1.40 RMSE 1.78 1.91 1.56 1.61
Pearson’s r 0.68 0.71 0.66 0.68 Pearson’s r 0.47 0.40 0.46 0.51

Cross Modality
(Cross Interaction)

RMSE 1.55 1.43 1.51 1.33 RMSE 1.56 1.62 1.61 1.70
Pearson’s r 0.65 0.68 0.66 0.71 Pearson’s r 0.50 0.53 0.46 0.47

Table S2. Comparison between GAT and GCN in compound-protein contacts prediction (measured by AUPRC and AUROC).

Methods
GAT GCN GAT GCN

S.-Both U.S.-Comp. S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both U.S.-Prot. U.S.-Both

Single Modality
(2D Graphs)

AUPRC (%) 17.29 17.46 11.14 10.70 AUPRC (%) 8.78 7.05 11.65 9.50
AUROC (%) 77.34 78.70 74.19 74.15 AUROC (%) 77.94 76.59 79.36 78.45

Cross Modality
(Concatenation)

AUPRC (%) 23.85 23.52 21.88 22.06 AUPRC (%) 7.74 7.29 7.51 6.62
AUROC (%) 80.90 81.64 80.74 81.15 AUROC (%) 80.59 78.95 77.28 77.58

Cross Modality
(Cross Interaction)

AUPRC (%) 23.49 23.29 23.40 23.51 AUPRC (%) 12.43 9.60 7.11 6.77
AUROC (%) 81.30 82.07 81.39 82.03 AUROC (%) 80.64 79.78 74.93 76.29

Table S3. HRNN vs Transformer.

Tasks
HRNN Transformer HRNN Transformer

S.-Both U.S.-Comp. S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both U.S.-Prot. U.S.-Both

Affinity
prediction

RMSE 1.57 1.38 1.69 1.49 RMSE 1.63 1.79 1.88 1.98
Pearson’s r 0.67 0.73 0.59 0.66 Pearson’s r 0.44 0.40 0.34 0.36

Contact
prediction

AUPRC (%) 20.51 20.80 12.09 11.76 AUPRC 6.54 6.36 0.62 0.58
AUROC (%) 79.01 80.00 64.25 63.34 AUROC 73.03 73.41 51.99 52.01

(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Figure S3. Compound-protein pair AL1-CA2 top-10 contacts prediction visualization. The dashed lines in red and pale cyan highlight correct and incorrect
predictions, respectively, according to native, direct contacts retrieved by LigPlot.

E Comparing GraphComp and GraphCL for
pretraining protein graphs
Experiments on comparing GraphComp (You et al., 2020b) and

GraphCL (You et al., 2020a) on single- modality pretraining for embedding
2D graphs are reported in Table S5.

F Pre-Training on the Larger Set of Unlabelled
Proteins at Different Epochs
Figures S8 - S15 show the results of cross-modality models with

sequence pre-training on the larger set for different epochs.
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Table S4. Affinities and contacts prediction on five compound-protein pairs, AL1–CA2, IT2–CA2, CPB–PYGM, T68–PYGM and LHL–LCK.

Methods Affinity Error↓ AUPRC (%) AUROC (%) Top-10 Contact Precision

AL1–CA2
Gao et al. 3.28 0.6 50.0 0.0

DeepAffinity+ 1.89 28.4 65.8 0.5
1D Sequences 2.81 8.60 75.41 0.2

2D Graphs 3.86 14.56 82.11 0.5
Concatenation 3.64 7.94 90.99 0.2

Cross Interaction 3.10 25.44 81.95 0.5
IT2–CA2

Gao et al. 3.09 0.9 63.0 0.0
DeepAffinity+ 2.92 3.4 60.1 0.3
1D Sequences 3.37 4.37 75.96 0.1

2D Graphs 4.82 1.02 77.78 0.0
Concatenation 6.27 8.73 96.82 0.1

Cross Interaction 5.22 2.25 82.19 0.0
CPB–PYGM

Gao et al. 0.61 0.1 52.2 0.0
DeepAffinity+ 0.10 0.6 55.2 0.1
1D Sequences 0.06 3.01 76.25 0.0

2D Graphs 0.73 14.85 74.19 0.4
Concatenation 0.46 5.60 79.22 0.0

Cross Interaction 0.23 4.16 83.81 0.1
T68–PYGM

Gao et al. 1.80 0.6 63.5 0.0
DeepAffinity+ 0.68 67.5 94.4 1.0
1D Sequences 0.99 63.08 91.78 1.0

2D Graphs 0.24 52.20 90.82 1.0
Concatenation 0.51 77.73 96.73 1.0

Cross Interaction 0.94 73.10 97.62 1.0
LHL–LCK

Gao et al. 2.89 0.5 54.0 0.0
DeepAffinity+ 2.12 5.3 50.0 0.4
1D Sequences 0.83 20.40 78.53 0.5

2D Graphs 2.02 0.86 0.77 0.0
Concatenation 1.60 21.27 85.80 0.6

Cross Interaction 1.51 20.59 83.72 0.6

(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Figure S4. Compound-protein pair IT2-CA2 top-10 contacts prediction visualization.

G Pre-Training for Compound Graph Embeddings
Experimental results on pre-training the compound graph encoder

(GraphComp is performed here) on the cross interaction model with

MLM+GraphComp pre-training for protein embeddings are shown in
Table S6. The pre-training compounds are collected from STITCH
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(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Figure S5. Compound-protein pair CPB-PYGM top-10 contacts prediction visualization.

(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Figure S6. Compound-protein pair T68-PYGM top-10 contacts prediction visualization.

(a) 1D Sequences (b) 2D Graphs (c) Concatenation (d) Cross Interaction

Figure S7. Compound-protein pair LHL-LCK top-10 contacts prediction visualization.

Table S5. GraphComp vs GraphCL.

Tasks
GraphComp GraphCL GraphComp GraphCL

S.-Both U.S.-Comp. S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both U.S.-Prot. U.S.-Both

Affinity
prediction

RMSE 1.62 1.44 1.53 1.41 RMSE 1.60 1.67 1.66 1.77
Pearson’s r 0.59 0.66 0.67 0.70 Pearson’s r 0.43 0.47 0.44 0.46

Contact
prediction

AUPRC (%) 23.63 23.41 18.15 17.30 AUPRC 11.36 9.36 11.09 8.55
AUROC (%) 79.71 81.31 76.04 75.96 AUROC 76.67 76.00 73.46 70.94

database (Szklarczyk et al., 2016) with the same preprocess procedure
conducted in (Karimi et al., 2020).

H Modeling Training
When no pre-training is performed, supervised models are trained over

the training set of the labelled data and makes inference on the four test sets
described in Section 2.1. We train models end-to-end with the following
optimization settings: the optimizer Adam with a learning rate of 0.0001,
the batch size of 32 and the maximum amount of training epochs being
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Table S6. Comparison between w/ and w/o compound graph embedding pre-training (GraphComp) on the cross interaction model with MLM+GraphComp pre-
training for protein embeddings.

Methods
w/o Comp. P.T. w/ Comp. P.T. w/o Comp. P.T. w/ Comp. P.T.

S.-Both U.S.-Comp. S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both U.S.-Prot. U.S.-Both

Affinities
Prediction

RMSE 1.68 1.45 1.61 1.45 RMSE 1.83 1.90 1.85 1.90
Pearson’s r 0.55 0.65 0.61 0.65 Pearson’s r 0.26 0.26 0.31 0.32

Contacts
Prediction

AUPRC (%) 23.21 23.13 25.27 24.83 AUPRC (%) 12.80 10.88 9.71 9.23
AUROC (%) 82.80 82.88 82.09 82.56 AUROC (%) 81.58 80.47 79.25 78.15

S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both
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Figure S8. Affinity performance (RMSE) of concatenation model with
different epochs pre-trained on the larger set.
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Figure S9. Affinity performance (Pearson’s r) of concatenation model with
different epochs pre-trained on the larger set.

S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both

5

10

15

20

25
AUPRC (%)

Epochs 1-10 Epoch 100

Figure S10. Contact performance (AUPRC) of concatenation model with
different epochs pre-trained on the larger set.
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Figure S11. Contact performance (AUROC) of concatenation model with
different epochs pre-trained on the larger set.

200. The best checkpoint model is selected via validation (we use 10%
randomly held-out data of the training set for validation). The following
hyperparameters in the loss function are optimized following a two-stage
process over pre-defined grids (Karimi et al., 2020). Specifically, λgroup,

S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both
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Figure S12. Affinity performance (RMSE) of cross interaction model with
different epochs pre-trained on the larger set.
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Figure S13. Affinity performance (Pearson’s r) of cross interaction model
with different epochs pre-trained on the larger set.
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Figure S14. Contact performance (AUPRC) of cross interaction model with
different epochs pre-trained on the larger set.
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Figure S15. Contact performance (AUROC) of cross interaction model with
different epochs pre-trained on the larger set.

λfused, and λL1 are first tuned over {0.01, 0.001, 0.0001} with λcont = 0

(affinity regression alone), where the best affinity loss laff is recorded and
λgroup, λfused, and λL1 are optimized with the best AUPRC, such that the
corresponding affinity RMSE does not deteriorate more than 10% of the
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best affinity RMSE. In the second stage, we fix the optimal λgroup, λfused,
and λL1 and tune λcont over {1e0, 1e1, 1e2, 1e3, 1e4, 1e5} based on the
best AUPRC performance while jointly optimizing the regularized affinity
and contact losses.

When pretraining is additionally introduced, we use two unlabelled
datasets at different scales as described in Section 2.1. In the smaller
set with ground-truth contact maps for (unbound) proteins, we perform
single- and multi-modality pre-training. In the larger set without structure
information for proteins, we only pre-train the sequence encoder in the
single-modality scheme, and additionally utilize structure information in
the smaller set to pre-train the graph encoder in the multi-modality scheme.
The masking ratios of sequence and graph self-supervisions are tuned
in {0.05, 0.15, 0.25}. The optimization procedure is executed by Adam
optimizer with a learning rate of 0.0001 and the batch size is set as 128.
We pre-train for 100 epochs in the smaller set, while in the >200 times
larger set, we observe the “pre-training overfitting" phenomenon based on
validation (see Section 3.4) , and thus we cautiously perform pre-training
only for one epoch to report the performance. The ablation results on the
number of epochs are shown in Appendix F.

I Procedure of Reproducing MONN
We reproduce MONN (Li et al., 2020) with their public code

(https://github.com/lishuya17/MONN) on our curated CPAC dataset. We
replace their compound encoder graph warp module (Ishiguro et al., 2019)
with a GCN (the same as in DeepAffinity+ (Karimi et al., 2020)) since we
treat compound graphs as homogeneous graphs whereas the graph warp
module can only be applied on heterogeneous graphs.

The MONN loss is defined as the weighted summation of the affinity
and contact losses, i.e. lossMONN = lossaff + α losscont where the weight
factor α is pre-set as 0.1. Thereby, we tune hyper-parameters on three
configurations as defined in their implementation: (k_head, kernel_size,
hidden_size1, hidden_size2) ∈ {(2, 7, 128, 128), (1, 5, 128, 128), (1,
7, 128, 128)}, with the selection validation criterion: we record the best
affinity loss (RMSE), and select the hyper-parameter combination with
the best AUPRC such that the corresponding affinity RMSE does not
deteriorate more than 10% of the best affinity RMSE.

References
Ishiguro, K., Maeda, S.-i., and Koyama, M. (2019). Graph warp module: an

auxiliary module for boosting the power of graph neural networks in molecular
graph analysis. arXiv preprint arXiv:1902.01020.

Karimi, M., Wu, D., Wang, Z., and Shen, Y. (2020). Explainable deep relational
networks for predicting compound–protein affinities and contacts. Journal of
Chemical Information and Modeling, 61(1), 46–66.

Li, S., Wan, F., Shu, H., Jiang, T., Zhao, D., and Zeng, J. (2020). Monn: a
multi-objective neural network for predicting compound-protein interactions and
affinities. Cell Systems, 10(4), 308–322.

Szklarczyk, D., Santos, A., Von Mering, C., Jensen, L. J., Bork, P., and Kuhn, M.
(2016). Stitch 5: augmenting protein–chemical interaction networks with tissue
and affinity data. Nucleic acids research, 44(D1), D380–D384.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020a). Graph contrastive
learning with augmentations. Advances in Neural Information Processing Systems,
33.

You, Y., Chen, T., Wang, Z., and Shen, Y. (2020b). When does self-supervision help
graph convolutional networks? In International Conference on Machine Learning,
pages 10871–10880. PMLR.


