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* A brand-new training objective for diffusion
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generative models

termed as population regularization — to enforce

the conservativeness in population statistics.
~

We name the pipeline as Correlational
Lagrangian Schrodinger Bridge (CLSB).
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Individual-level regularization:
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Application to

all particles Regularization

r—— Data fitting
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dt, s.t. mo = Po, ™1 = P1

Individual state

Population-level regularization:
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Regularization
pr—— Data fitting
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Population state

h(-) is the domain-specific cost function.

» Background & Problem
< Data: Cross-sectional observations: (o Agrouporesis
¢ Data are sampled from unknown SDEs;
*» Trajectories are not accessible! | single cell
*» Populations at different time stamps are accessible. 5
st _ _ Resulting in Cell Death
“* Motivating example: Single-cell sequencing data. —— — e o = —
*» Goal: Modeling the temporal evolution of the data. ! _| ey Asmdmouon: |
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The CLSB pipeline:

“* A diffusion generative model to parametrize SDEs;

“* Optimizing models to generate samples to match
the marginal observations at varied time stamps;

“* Regularizing the generated trajectories with priors.

In formulation: Method: Constructing (7¢)sc0,1) that

1. m = p; given my = Py (data fitting);

2. (m¢)tep0,11adheres to certain criteria (regularization).

Innovation: A novel regularization at the population level.

*» Existing approaches are referred as individual

regularization — Priors are enforced to individuals.
** We propose the novel population regularization — by

switching the order of expectation and derivation,

*+ to leverage the more effective and robust conservativeness .
prior at population — Priors are enforced to distributions.

* New theoretical results are provided on its analytical

expression (please refer to main text Section 3.2).
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> Expe rl m e nts Methods tl t2 (MOSt Challenglng) t3 t1 t2 t3 AR,

Random 1.873+0.014 2.08240.011 1.867+0.011 | 1.8704+0.013 2.084+0.010 1.868+0.012 | 10.0

“ U diti | " g | 4] SimpleAvg 1.670+0.019 1.8014+0.014 1.7494+0.016 | 1.8724+0.014 2.085+0.011 1.868+0.012 | 9.3

* Unconditiona eneration on developmenta OT-Flow 1.921 2.421 1.542 1.921 1.151 1.438 9.0

*

deli : 8 _ ! P OT-Flow+OT 1.726 2.154 1.397 1.726 1.186 1.240 7.6

m IN mbrvonic stem - TrajectoryNet 1.774 1.888 1.774 1.178 1.315 6.8

1 O e_ _g O Ie yo _C Sle cells, TrajectoryNet+OT 1.134 1.008 1.134 1.151 1.132 3.6

DG 4 DMSB 1.593 2.591 2.058 - - - 10.3

» Conditiona generatlon on dose dependent NeuralSDE 1.507+0.014 1.7434+0.031 1.586+0.038 | 1.5044+0.013 1.384+0.016 0.962+0.014 | 6.1

1t ' NLSB(E) 1.12840.007 1.43240.022 1.13240.034 | 1.1304+0.007 1.099+0.010 +0.012 | 2.6

cellular response predlCthn to perturbatlons NLSB(E+D+V) | 1.49940.005 1.9454+0.006 1.61940.016 | 1.4984+0.005 1.418+0.009 0.966+0.016 | 6.8
(please refer to-main text Section 4.2). CLSB(ctng > 0) +0.019 1.419+0.028 1.13240.038 +0.018 1.117+0.009  0.826+0.010

CLSB(yng = 0) | 1.074+0.009 1.244+0.016 1.25540.022 | 1.09540.009 +0.014 0.8424+0.012 | 2.1




