

Correlational Lagrangian Schrödinger Bridge: Learning Dynamics with Population-Level Regularization

Yuning You¹, Ruida Zhou², Yang Shen¹ ¹Texas A&M University, ²University of California, Los Angeles

TL;DR

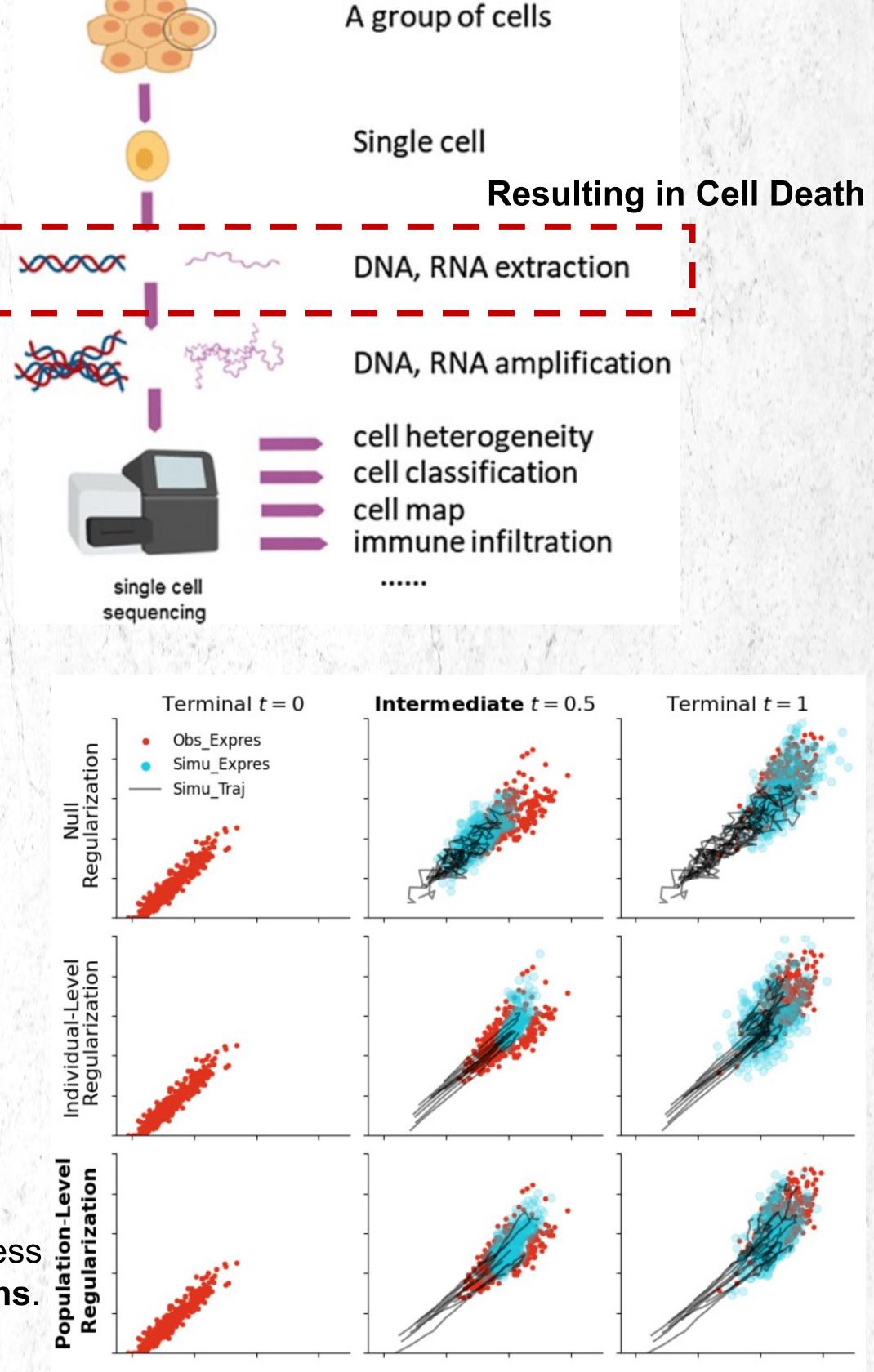
- A brand-new training objective for diffusion generative models
- termed as population regularization to enforce the conservativeness in population statistics.
- We name the pipeline as Correlational Lagrangian Schrödinger Bridge (CLSB).
- Background & Problem

Data: Cross-sectional observations:
Data are sampled from unknown SDEs;
Trajectories are not accessible!

Populations at different time stamps are accessible.

Motivating example: Single-cell sequencing data.

Goal: Modeling the temporal evolution of the data.


In formulation:

Approach

The CLSB pipeline:

- A diffusion generative model to parametrize SDEs;
- Optimizing models to generate samples to match the marginal observations at varied time stamps;
- Regularizing the generated trajectories with priors.

In formulation: <u>Method</u>: Constructing (π_t)_{t∈[0,1]} that
1. π₁ = p̂₁ given π₀ = p̂₀ (data fitting);
2. (π_t)_{t∈[0,1]} adheres to certain criteria (regularization).

Innovation: A novel regularization at the population level.

- Existing approaches are referred as individual regularization Priors are enforced to individuals.
- We propose the novel population regularization by switching the order of expectation and derivation,
- to leverage the more effective and robust conservativeness prior at population Priors are enforced to distributions.
- New theoretical results are provided on its analytical expression (please refer to main text Section 3.2).

> Experiments

- Unconditional generation on developmental modeling of embryonic stem cells;
- Conditional generation on dose-dependent cellular response prediction to perturbations (please refer to main text Section 4.2).

	Methods	All-Step Prediction			One-Step Prediction			A.R.
		t_1	t_2 (Most Challenging)	t_3	$ t_1$	t_2	t_3	A.N.
	Random	$1.873 {\pm} 0.014$	$2.082{\pm}0.011$	$1.867 {\pm} 0.011$	1.870±0.013	$2.084{\pm}0.010$	$1.868 {\pm} 0.012$	10.0
	SimpleAvg	1.670 ± 0.019	1.801 ± 0.014	1.749 ± 0.016	1.872 ± 0.014	$2.085 {\pm} 0.011$	$1.868 {\pm} 0.012$	9.3
	OT-Flow	1.921	2.421	1.542	1.921	1.151	1.438	9.0
ġ	OT-Flow+OT	1.726	2.154	1.397	1.726	1.186	1.240	7.6
1	TrajectoryNet	1.774	1.888	1.076	1.774	1.178	1.315	6.8
	TrajectoryNet+OT	1.134	1.336	1.008	1.134	1.151	1.132	3.6
	DMSB	1.593	2.591	2.058	_	_	-	10.3
	NeuralSDE	1.507 ± 0.014	1.743 ± 0.031	$1.586 {\pm} 0.038$	1.504 ± 0.013	$1.384{\pm}0.016$	$0.962 {\pm} 0.014$	6.1
	NLSB(E)	1.128 ± 0.007	1.432 ± 0.022	1.132 ± 0.034	1.130 ± 0.007	1.099±0.010	0.839±0.012	2.6
	NLSB(E+D+V)	$1.499 {\pm} 0.005$	$1.945 {\pm} 0.006$	$1.619{\pm}0.016$	1.498 ± 0.005	$1.418{\pm}0.009$	$0.966{\pm}0.016$	6.8
	$\text{CLSB}(\alpha_{\text{ind}} > 0)$	1.099±0.019	$1.419{\pm}0.028$	$1.132{\pm}0.038$	1.098±0.018	1.117 ± 0.009	0.826±0.010	2.5
8	$\text{CLSB}(\alpha_{\text{ind}} = 0)$	1.074±0.009	1.244 ±0.016	1.255 ± 0.022	1.095 ±0.009	1.106±0.014	$0.842 {\pm} 0.012$	2.1