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Motivation: Drug Discovery for

Biological Systems

Wist et. al.  Genome Medicine (2009)

• A paradigm shift
One disease. One target.  One drug => Systems Pharmacology.  

– Desired multiple targets (with proper activity profiles)

– Undesired multiple targets to avoid toxicity and side-effects.
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Exploring Chemical Space for

Desired Interactions on Proteomes

Over 80% of >900 FDA-approved human drugs are small-molecule 

compounds targeting proteins

Compounds (1060)

Assays (101

IC50, EC50, Ki …)

Proteins (>106

“proteoforms”) 2/22
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Current CPI Prediction Methods

Protein structure-based docking

Can predict the activity level of CPI (affinity)

Very interpretable

Non-convex optimization is challenging and slow

Many proteins’ structures are not solved

Structurally 

determined

Functionally 

annotated

Sequenced
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Current CPI Prediction Methods

Protein sequence-based CPI identification (As of 2017)

Can only classify CPIs (mostly binary)

Not interpretable

Machine learning is relatively fast

Labeled sequence data are abundant

Structurally 

determined

Functionally 

annotated

Sequenced
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Current CPI Prediction Methods

Protein sequence-based CPI identification (As of 2021)

Can predict affinity levels

Somewhat interpretable (“attentions” over intermolecular contacts)

Machine learning is relatively fast

Labeled (and unlabeled) sequence data are abundant
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Current Formulation

➢ Compound-protein affinity and contact

prediction (CPAC):

❖ Affinity: quantitative level of interaction

❖ Contact: intermolecular atom-residue contact,

underlying interpretation for affinity
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Remaining Gaps

➢ Structure-relevant prediction relies on structure-unaware 1D sequences as inputs*

❖ Not suffice to model 3D structural relationships

❖ Empirically less generalizable

➢ More severe under sparse ground-truth labeling

❖ Pairwise (compound-protein) labels

are expensive (especially contact label)

❖ Structure data are less available

❖ Intersection of them → supervision starvation

➢ Challenges: Inadequate data information & label supervision

* Exceptions: DeepAffinity uses sequence-predicted structure property sequence as inputs.

DeepAffinity+/DeepRelations uses sequence-predicted structure contexts as regularization.
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Our Contributions

➢ Cross-modality learning to introduce structure-awareness

❖ Different modalities excel at different tasks

❖ Concatenation, cross interaction further benefit

➢ Self-supervised learning to exploit unlabelled data

❖ Mask language modeling for 1D model

❖ Graph completion for 2D model

❖ Different self-supervisions boost different tasks

Ref 6. 

arXiv:2012.00651 

(MLSB’20)
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Method. Cross-Modality Learning

➢ Base model: DeepAffinity+

❖ Replace hierarchical attention with joint attention

➢ Compounds are represented as chemical graphs and encoded by GCN

➢ Single-modality model for proteins

❖ 1D sequence model: 

▪ Amino-acid sequence (consecutive k-mers) as protein input

▪ HRNN as sequence encoder 

❖ 2D graph model:

▪ Predicted intra-protein contact map as protein input

▪ Still structure-free input, with additional structural and evolutional 
information as induction bias from RaptorX

▪ GAT as graph encoder

Ref 1. DeepRelations, JCIM’20

Ref 2. RaptorX, NAR’16
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Method. Cross-Modality Learning

➢ Cross-modality model:

❖ Concatenation

▪ Concatenating embeddings of

different modalities

▪ Preserving information

❖ Cross interaction

▪ Additional information flow

is introduced across modalities
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Method. Self-Supervised Learning

➢ Masked language modeling (MLM)

for 1D sequences

❖ Predicting the masking residue 

with sequential relation

➢ Graph completion (Graph Comp.)

for 2D contact maps

❖ Predicting the masking residue 

with topological knowledge

➢ Joint pre-training

❖ Jointly performing MLM and 

GraphComp
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Experiments. Datasets

➢ Evaluation dataset

❖ CPAC data (~4,500 pairs) from DeepRelations

❖ Curated from PDBsum[3] and BindingDB[4]

➢ Self-supervised pre-training dataset 

for embedding 

❖ 12,798,671 protein domain sequences

❖ 60,137 sequences with structure

❖ Curated from Pfam-A[5]

Ref 1. DeepRelations, JCIM’20

Kinases

GPCRs

Ion channels

Nuclear rec.

…
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Experiments. Results

➢ Single-modality:

Different mods.

excel at different

tasks

❖ 1D seq. in

affinity prediction

❖ 2D graph in

contact prediction
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Experiments. Results

➢ Cross-modality

further benefits

❖ Simple concat.

boosts against

either mods.

❖ Further inter-mod.

information flow

(cross interaction)

achieves SOTA
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Experiments. Results

➢ 1D pre-training

(MLM) promotes

affinity prediction

➢ Deteriorating

contact prediction

performance
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Experiments. Results

➢ Further 2D

pre-training

(MLM+

GraphComp)

helps contact

prediction

➢ Deteriorating

affinity prediction

performance
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Takeaways

➢ For inadequate data information:

❖ Different modality information benefits different tasks

❖ Incorporate both (cross-modality) achieves SOTA

➢ For insufficient supervision:

❖ Different modality pre-training boosts with trade-off

❖MLM benefits affinity prediction and further +GraphComp contact
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Further Discussions

➢ Potentials of cross-modality learning:

❖More modalities data (e.g. 3D coordinates)

❖More variants of one modality (e.g. atom graphs)

➢ Potentials of self-supervised learning:

❖ Different pre-training strategies

❖More self-supervised labels

❖ Self-supervision for more modalities
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