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Motivation: Drug Discovery for TEXAS A&M UNIVERSITY
9 y AF.V‘

Engineering

Biological Systems

» A paradigm shift
One-disease--One-target—One-drug- => Systems Pharmacology.

Tissue-cell Intracellular Molecular
level network level level

atol
ses

Levels of interacting systems

— Desired multiple targets (with proper activity profiles)
— Undesired multiple targets to avoid toxicity and side-effects.

Wist et. al. Genome Medicine (2009) - 1/22



Exploring Chemical Space for TEXAS ABM UNIVERSITY
P 9 P AFVI

Desired Interactions on Proteomes Engineering

Over 80% of >900 FDA-approved human drugs are small-molecule
compounds targeting proteins

Assays (10!
|IC50, EC50, Ki|.»

Compounds (10699)

Proteins (>10°
“proteoforms”) 2/22
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Current CPI Prediction Methods AIM | Engineering

Protein structure-based docking
Can predict the activity level of CPI (affinity)
Very interpretable
Non-convex optimization is challenging and slow
Many proteins’ structures are not solved
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Current CPI Prediction Methods AIM | Engineering

Protein sequence-based CPI identification (As of 2017)
Can only classify CPIs (mostly binary)
Not interpretable
Machine learning is relatively fast
Labeled sequence data are abundant
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Current CPI Prediction Methods AIM | Engineering

Protein sequence-based CPI identification (As of 2021)
Can predict affinity levels
Somewhat interpretable (“attentions” over intermolecular contacts)
Machine learning is relatively fast
Labeled (and unlabeled) sequence data are abundant

Bioinformatics, 35(18), 2019, 3329-3338
doi: 10.1093/bicinformatics/btz111 JCINI ?’:‘.%%E‘?E:g“"‘“""
e Access Publication Date: 15 February 2019
Original Paper OXFORD Ce“ S Stems
y . R . pubs.acs.org/jcim
. . MONN: A Multi-objective Neural Network for
Structural bioinformatics P ; ; Explainable Deep Relational Networks for Predicting Compound-—
Predicting Compound-Protein Interactions and pial pfietr P d 9 P
DeepAffinity: interpretable deep learning of Affinities Protein A lmtles‘an Contacts .
compound—protein affinity through unified Graphical Abstract Authore Mostafa Karimi," Di Wu," Zhangyang Wang, and Yang Shen*
recurrent and convolutional neural networks Shuya Li, Fangping Wan, Hantao Sh, Cite T Cherm I ocks 2021 €1, 46756 fead onfe
Molecular graph Protein sequence Tao Jiang, Dan Zhao, Jianyang Zeng

Mostafa Karimi'?, Di Wu', Zhangyang Wang® and Yang Shen @ "%*
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Current Formulation Engineering

» Compound-protein affinity and contact

prediction (CPAC): g‘g;\‘iﬁ 2
.. . . . . ﬁ . ~._Q gg, b\
* Affinity: quantitative level of interaction d"i‘t{i‘ A
- : \ B ;4‘ /-_,,\5}3/““’ \
% Contact: intermolecular atom-residue contact, ‘, >2:\s‘3§\j

underlying interpretation for affinity
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Remaining Gaps Engineering

» Structure-relevant prediction relies on structure-unaware 1D sequences as Inputs*
*» Not suffice to model 3D structural relationships

’ - [l . 4 .
s Empirically less generalizable ol g e mmp e g,
o - Hmm _[ ) 1
§ _j'_- ."_‘:-"q — forot '—";& e, v Falt
‘“g l:, Zcon f.\'_ﬁ'-’ ;\"
Xprot »j:: :
Neural networks ( Embeddings Qutputs

* Exceptions: DeepAffinity uses sequence-predicted structure property sequence as inputs.

DeepAffinity+/DeepRelations uses sequence-predicted structure contexts as regularization. 8/22
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Remaining Gaps Engineering

» Structure-relevant prediction relies on structure-unaware 1D sequences as Inputs*

\/

*» Not suffice to model 3D structural relationships
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are expensive (especially contact label)
% Structure data are less available
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* Intersection of them - supervision starvation
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TEXAS A&M UNIVERSITY

Remaining Gaps Engineering

>

* Exceptions: DeepAffinity uses sequence-predicted structure property sequence as inputs.

Structure-relevant prediction relies on structure-unaware 1D sequences as inputs*

\/

*» Not suffice to model 3D structural relationships

’ - - - X ]]]]] P a H IIIII T Hcp
s Empirically less generalizable el oy e Loy g
i Hmm _[ o 1
3 ﬁ; .‘_‘?0. S fpmt— '_"';]? ¢ sy Ly Pt
More severe under sparse ground-truth labeling e T S 8
prot ~ e

\/

s Pairwise (compound-protein) labels
are expensive (especially contact label)

+» Structure data are less available

\/

* Intersection of them - supervision starvation

Neural networks ( Embeddings Qutputs

Challenges: Inadequate data information & label supervision

DeepAffinity+/DeepRelations uses sequence-predicted structure contexts as regularization. 10/22



Our Contributions AFYI Eﬁ;ﬁészﬁ'g

» Cross-modality learning to introduce structure-awareness R 6.
% Different modalities excel at different tasks arxm%g;;(%%l

\/

*» Concatenation, cross interaction further benefit

» Self-supervised learning to exploit unlabelled data
“ Mask language modeling for 1D model
% Graph completion for 2D model

\/

s Different self-supervisions boost different tasks

11/22



Method. Cross-Modality Learning AIM | Engineering

> Base mOdel: DeepAffInI’[y+ Ref 1. DeepRelations, JCIM'20 Zeont = Z' Jsum(Z’. ),
* Replace hierarchical attention with joint attention iy = (comp.i W eompatin) " (Frpror.y W ot

» Compounds are represented as chemical graphs and encoded by GCN

» Single-modality model for proteins
* 1D sequence model:
* Amino-acid sequence (consecutive k-mers) as protein input
= HRNN as sequence encoder
s 2D graph model:
= Predicted intra-protein contact map as protein INPUt  ref2. Raptorx, NAR'16

= Still structure-free input, with additional structural and evolutional
Information as induction bias from RaptorX

= GAT as graph encoder 12/22



Method. Cross-Modality Learning

TEXAS A&M UNIVERSITY

Engineering

I

» Cross-modality model:

\/

+» Concatenation

= Concatenating embeddings of
different modalities

* Preserving information
% Cross interaction

=  Additional information flow
IS Introduced across modalities

- " T, /
3 h’P['“LSqu'”- - (Q’l mOld(h’pmt graph,n hpm[_scq,n) + 1) hpm[.seq,n?

T, ’
hpm[.graph,n) + 1) hpm[_scq,ne

(4)

: . 1"
---»  hprotgraph,n = (Slgﬂl@ld{h

prot.seq, T

1D sequence
K Q

O—O—O—O—..

j;p ok geq {a)
= HRNN =
. 4[/_1

Cat—e MLP —-—%)

p ot,graph T
D sequence
( Q By

O-0-0-O—... —HRNN—(— ) —{. —» £
¥ L -
o
F o J
Kpros . .» Cl-Seq
" \ P
i rar = ‘.’
- -
i £

! LY
i . : Y
0 ' . Cl-Graph —l
ALY

Py -

\ Hpcmtg;l aph Hyprot, graph /

Cat Concatenation (- | Residue-wise multiplication | Cl | Cross interaction module

(b) \

Hpot 5eq

le-ou
at=—e MLP —-»{ %

9

= = (Cross interaction connections

Figure 1: Cross-modality encoders. (a) Naive concatenation preserves information
from different sources. (b) Cross interaction with inter-modality information flows.

13/22



Method. Self-Supervised Learning  &M| engineering

» Masked language modeling (MLM)

1D sequence H,oh oo
for 1D Sequences 6—0—6—0—5—0 « « = HRNN -—@—r MLP == O Prgq;ict
< Predicting the masking residue (@)
with sequential relation S - |
~ YCM. co—> | GAT > = MLP = O P"‘é%"’t
mingyrnn, mep) Lo (MLP(HRNN(FDMD: Ymask)e (b)

S.t. E_T'pmt; Y mask = mask(Fpror),
» Graph completion (Graph Comp.)
for 2D contact maps

% Predicting the masking residue
with topological knowledge

Figure 2: Self-supervised tasks for different modalities. (a) Masked language
modeling (MLM). (b) Graph completion (GraphComp).

» Joint pre-training
 Jointly performing MLM and
GraphComp

min { GAT, MLP} Lcx (I\'HILP(GAT(FWUL: AI’!I’OI))! Ymask) ;

S.L Fpmh Y nask = 1]]115]((Fpmt)- 14/22



Experiments. Datasets AM | Engineering

> Evaluation dataset

% CPAC data (~4,500 pairs) from DeepRelations e ncopRola gl
«» Curated from PDBsumf®! and BindingDBI*! e a2
Kinases
GPCRs
lon channels

Training Set: 2334 pairs New

Compound Set:

Nuclear rec,,
] Test Set: 591 pairs 521 pairs

o~
P -

Protein
1287

(random split)

» Self-supervised pre-training dataset
for embedding

12,798,671 protein domain sequences . o 3o Now s

% 60,137 sequences with structure =
% Curated from Pfam-Al°]
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Experiments. Results AM | Engineering

> S I n g I e_l I IO d al Ity . Table 1: Comparison among SOTAs and our models (measured by RMSE, Pearson’s correlatior

: MONN is tuned within the hyper-parameter configurations in the public implementation. The best n
D Iﬁe re nt m Od S seen, unseen, and Prot., Comp. are short for protein, compound. S.-Both & U.S.-Comp. are categ
I d .ﬁ Aflinity Prediction
Methods
excel at dirrerent CHoE S.Both U.S.-Comp. US.-Prot. U.S.-Both

SOTAs
taS kS RMSE 1.87 1.75 1.72 1.79

Gao er al.* (3)

Pearson’s r 0.58 0.51 042 0.42
RMSE 1.44 1.28 1.67 1.75
MONN (2) Pearson’s r 0.70 0.75 0.46 0.45
. . DeepAffinity+* (1) RMSE 1.49 1.34 1.57 1.61
oge 1 D Seq 1N Pearson’s 7 0.70 0.71 047 0.52
_______ Ours, without Pre-Praini
aﬂil N |t I’edICtIOI’] | Single Modality T RMSE 1.57 1.38 | 1.63 1.79 i
y p | (1D Sequences) ! Pearson’s r 0.67 0.73 | 0.44 [).4()|
| Single Modality '  RMSE 1.49 1.37 | 175 1.93 |
| (@D Graphs) _! Pearson’s r 0.68 0.70 | 043 0.34 |
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Experiments. Results AM | Engineering

> S I n g I e_l I IO d al Ity . Table 1: Comparison among SOTAs and our models (measured by RMSE, Pearson'’s correlation coefficient, AUPRC and AUROC,). * denotes the cited performances.
: MONN is tuned within the hyper-parameter configurations in the public implementation. The best numbers (1st, 2nd) are highlighted for given test sets. S., US. are short for
D Iﬁe re nt m Od S seen, unseen, and Prot., Comp. are short for protein, compound. S.-Both & U.S.-Comp. are categorized as seen proteins, and U.S.-Prot. & U.S.-Both as unseen proteins.

I I _ Affinity Prediction Contact Prediction
excel at dlﬁerent Methods S.-Both U.S.Comp. US.Prot. U.S.-Both S-Both U.S.Comp U.S.Prot. U.S.-Both

tasks
Gao et al* (3) RMSE 1.87 1.75 1.72 1.79 AUPRC (%)  0.60 0.57 0.48 0.48
@ Pearson’s7  0.58 051 0.42 0.42 AUROC (%)  51.57 51.50 51.65 51.55
MONN (2) RMSE 1.44 1.28 1.67 1.75 AUPRC (%) 098 0.99 0.99 0.98
- Pearson’s (.70 0.75 0.46 0.45 AUROC (%)  58.57 60.15 65.66 64.59
o~ 3 DeepAffinity+* (1) RMSE 1.49 1.34 1.57 1.61 AUPRC (%) 19.74 19.98 4.77 4.11
*° 1D Seq IN P Y Pearson’s (.70 0.71 0.47 0.52 AUROC (%)  73.78 73.80 60.01 59.09
e — Ours, without Pre-Praining ————— e —— 1
afflnlt I’edIC'[I on | Single Modality! RMSE 1.57 1.38 1.63 1.79 AUPRC (%) 2051 20.80 | 6.54 636 |
y p | (D Sequences}! Pearson’sr  0.67 0.73 0.44 0.40 AUROC (%)  79.01 80.00 [ 73.03 7341 |
| Single Modality RMSE 1.49 137 1.75 1.93 AUPRC (%) 17.29 17.46 I8.78 7.05 |
| (2D Graphs) ; Pearson’sr  0.68 0.70 0.43 0.34 AUROC (%)  77.34 78.70 7704 7659 |

4

s 2D graphin
contact prediction
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Experiments. Results AM | Engineering

» Cross-modality

4

4

further benefits

Simple concat.
boosts against
either mods.

Further inter-mod.
information flow
(cross interaction)
achieves SOTA

Table 1: Comparison among SOTAs and our models (measured by RMSE, Pearson'’s correlation coefficient, AUPRC and AUROC,). * denotes the cited performances.
MONN is tuned within the hyper-parameter configurations in the public implementation. The best numbers (1st, 2nd) are highlighted for given test sets. S., US. are short for
seen, unseen, and Prot., Comp. are short for protein, compound. S.-Both & U.S.-Comp. are categorized as seen proteins, and U.S.-Prot. & U.S.-Both as unseen proteins.

Methods Affinity Prediction Contact Prediction
S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both S.-Both U.S-Comp U.S.-Prot. U.S.-Both
(i — B ) | SOTAs
I Ge 1= 3 | RMSE 1.87 1.75 1.72 1.79 AUPRC (%) 0.60 0.57 0.48 0.48
| aoetal™ () poironsr 0.5 0.51 0.42 0.42 AUROC (%)  51.57 51.50 51.65 51.55
: MONN (2) | RMSE 1.44 1.28 1.67 1.75 AUPRC (%) 0.98 0.99 0.99 0.98
| | Pearson’s r 0.70 0.75 0.46 0.45 AUROC (%)  58.57 60.15 65.66 64.59
I DecpAffinity+* (]:) RMSE 1.49 1.34 1.57 1.61 AUPRC (%) 19.74 19.98 4.77 4.11
. L —. Pearson’s r 0.70 0.71 0.47 0.52 AUROC (%)  73.78 73.80 60.01 59.09
Ours, without Pre-Praining
Single Modality RMSE 1.57 1.38 1.63 1.79 AUPRC (%) 20.51 20.80 6.54 6.36
(1D Sequences) Pearson’s r 0.67 0.73 0.44 0.40 AUROC (%)  79.01 80.00 73.03 73.41
Single Modality RMSE 1.49 1.37 1.75 1.93 AUPRC (%) 17.29 17.46 8.78 7.05
___ (2D Graphs) _ Pearson’s r 0.68 0.70 _043 034  AUROC (%)  77.34 78.70 7794 _76.59 |
i Cross Modality | RMSE 1.47 1.37 | L.78 1.91 i AUPRC (%) 23.85 23.52 | 7.74 7.29 i
| (Concatenation)| Pearson’s r 0.68 0.71 | 0.47 0.40 I AUROC (%) 80.90 81.64 | 80.59 78.95 I
|  Cross Modality | RMSE 1.55 1.43 | 1.56 1.62 | AUPRC (%) 23.49 23.29 | 12.43 9.60
| (Cross lnlﬁ:l‘acti()nb Pearson’s r 0.65 0.68 | 0.50 0.53 | AUROC (%) 81.30 82.07 | 80.64 79.78 |

18/22



Experiments. Results AM | Engineering

> 1 D p re _tral n I n g Table 1: Comparison among SOTAs and our models (measured by RMSE, Pearson'’s correlation coefficient, AUPRC and AUROC,). * denotes the cited performances.
MONN is tuned within the hyper-parameter configurations in the public implementation. The best numbers (1st, 2nd) are highlighted for given test sets. S., US. are short for

(M L M) p ro m Otes seen, unseen, and Prot., Comp. are short for protein, compound. S.-Both & U.S.-Comp. are categorized as seen proteins, and U.S.-Prot. & U.S.-Both as unseen proteins.

afﬁ n ity p red i Cti O n Methods Affinity Prediction Contact Prediction
S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both S.-Both U.S-Comp U.S.-Prot. U.S.-Both
SOTAs
Gao et al.* (3) RMSE 1.87 1.75 1.72 1.79 AUPRC (%) 0.60 0.57 0.48 0.48
Pearson’s r 0.58 0.51 0.42 0.42 AUROC (%)  51.57 51.50 51.65 51.55
. = " RMSE 1.44 1.28 1.67 1.75 AUPRC (%) 0.98 0.99 0.99 0.98
> D ete rl O ra_tl n g MONN (2) Pearson’s r 0.70 0.75 0.46 0.45 AUROC (%)  58.57 60.15 65.66 64.59
* £ DecpAffinity+* (1) RMSE 1.49 1.34 1.57 1.61 AUPRC (%) 19.74 19.98 4.77 4.11
Contact pred ICtlon Pearson’s r 0.70 0.71 0.47 0.52 AUROC (%)  73.78 73.80 60.01 59.09
Ours. without Pre-Praining
pe rfo rm an Ce Single Modality RMSE 1.57 1.38 1.63 1.79 AUPRC (%) 20.51 20.80 6.54 6.36
(1D Sequences) Pearson’s r 0.67 0.73 0.44 0.40 AUROC (%)  79.01 80.00 73.03 73.41
Single Modality RMSE 1.49 1.37 1.75 1.93 AUPRC (%) 17.29 17.46 8.78 7.05
(2D Graphs) Pearson’s r 0.68 0.70 0.43 0.34 AUROC (%) 77.34 78.70 77.94 76.59
Cross Modality RMSE 1.47 1.37 1.78 1.91 AUPRC (%) 23.85 23.52 7.74 7.29
(Concatenation) Pearson’s r 0.68 0.71 0.47 0.40 AUROC (%) 80.90 81.64 80.59 78.95
Cross Modality RMSE 1.55 1.43 1.56 1.62 AUPRC (%) 23.49 23.29 12.43 9.60
(Cross Interaction)  Pearson’s r 0.65 0.68 0.50 0.53 AUROC (%) 81.30 82.07 80.04 79.78
________ ) Ours, Cross Interaction with Pre-Training

I MLM I RMSE 1.53 1.40 [ 1.46 1.53l AUPRC (%) 23.78 23.33 7.73 6.44
!_ ______ JI Pearson’s r 0.64 0.68 !_U_S(L L _()_SSJ AUROC (%)  80.34 81.09 77.44 76.42
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Experiments.

Results AFVI Engineering

» Further 2D
pre-training
(MLM+
GraphComp)
helps contact
prediction

» Deteriorating
affinity prediction
performance

Table 1: Comparison among SOTAs and our models (measured by RMSE, Pearson'’s correlation coefficient, AUPRC and AUROC,). * denotes the cited performances.
MONN is tuned within the hyper-parameter configurations in the public implementation. The best numbers (1st, 2nd) are highlighted for given test sets. S., US. are short for
seen, unseen, and Prot., Comp. are short for protein, compound. S.-Both & U.S.-Comp. are categorized as seen proteins, and U.S.-Prot. & U.S.-Both as unseen proteins.

Methods Affinity Prediction Contact Prediction
S.-Both U.S.-Comp. U.S.-Prot. U.S.-Both S.-Both U.S.-Comp U.S.-Prot. U.S.-Both
SOTAs
Gao et al.* (3) RMSE 1.87 1.75 1.72 1.79 AUPRC (%) 0.60 0.57 0.48 0.48
Pearson’s r 0.58 0.51 0.42 0.42 AUROC (%)  51.57 51.50 51.65 51.55
MONN (2) RMSE 1.44 1.28 1.67 1.75 AUPRC (%) 0.98 0.99 0.99 0.98
Pearson’s r 0.70 0.75 0.46 0.45 AUROC (%)  58.57 60.15 65.66 64.59
DeepAffinity+* (1) RMSE 1.49 1.34 1.57 1.61 AUPRC (%) 19.74 19.98 4.77 4.11
Pearson’s r 0.70 0.71 0.47 0.52 AUROC (%)  73.78 73.80 60.01 59.09
Ours, without Pre-Praining
Single Modality RMSE 1.57 1.38 1.63 1.79 AUPRC (%) 20.51 20.80 6.54 6.36
(1D Sequences) Pearson’s r 0.67 0.73 0.44 0.40 AUROC (%)  79.01 80.00 73.03 73.41
Single Modality RMSE 1.49 1.37 1.75 1.93 AUPRC (%) 17.29 17.46 8.78 7.05
(2D Graphs) Pearson’s r 0.68 0.70 0.43 0.34 AUROC (%) 77.34 78.70 77.94 76.59
Cross Modality RMSE 1.47 1.37 1.78 1.91 AUPRC (%) 23.85 23.52 7.74 7.29
(Concatenation) Pearson’s r 0.68 0.71 0.47 0.40 AUROC (%) 80.90 81.64 80.59 78.95
Cross Modality RMSE 1.55 1.43 1.56 1.62 AUPRC (%) 23.49 23.29 12.43 9.60
(Cross Interaction)  Pearson’s r 0.65 0.68 0.50 0.53 AUROC (%) 81.30 82.07 80.04 79.78
Ours, Cross Interaction with Pre-Training
MLM RMSE 1.53 1.40 1.46 1.53 AUPRC (%) 23.78 23.33 7.73 6.44
Pearson’s r 0.64 0.68 0.56 0.58 AUROC (%) 8034 _ _81.09 _ _ 7744 _ _7642_
|77 TMCM ¥+ | RMSE 1.64 1.46 1.65 1.65 AUPRC (%) i 24.13 23.65 11.38 1083 !
| GraphComp |  Pearson’s r 0.58 0.65 0.39 0.50 AUROC (%) | 82.09 82.70 78.75 78.63 _!
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Takeaways AFW Engineering

» For inadequate data information:
s Different modality information benefits different tasks
¢ Incorporate both (cross-modality) achieves SOTA

» For insufficient supervision:
¢ Different modality pre-training boosts with trade-off
“* MLM benefits affinity prediction and further +GraphComp contact

21/22



Further Discussions AIM | Engineering

» Potentials of cross-modality learning:
“ More modalities data (e.g. 3D coordinates)
¢ More variants of one modality (e.g. atom graphs)

» Potentials of self-supervised learning:
¢ Different pre-training strategies
“* More self-supervised labels
s Self-supervision for more modalities

22(22
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